共查询到18条相似文献,搜索用时 125 毫秒
1.
针对K-means聚类算法容易陷入局部最优、不能处理边界对象及线性不可分的缺点,提出一种基于粒子群的粗糙核聚类算法。该算法通过Mercer核将输入样本空间中的样本映射到高维空间,使样本变得线性可分,并结合粗糙集的思想,通过动态改变上下近似集的权重因子对边界对象进行有效处理,同时采用reliefF方法对样本属性进行加权处理,以解决混合数据的聚类问题,最后利用粒子群算法防止算法陷入局部最优。仿真实验表明,相对于其他改进算法,该算法具有较高的正确率和较短的收敛时间,并进一步验证了该算法的鲁棒性和稳定性,具有一定的实用价值。 相似文献
2.
3.
4.
5.
基于混沌的聚类粒子群优化算法 总被引:1,自引:0,他引:1
针对函数优化问题,提出了一种基于混沌的聚类粒子群优化算法。该算法利用混沌序列产生粒子的位置和速度,并与粒子群优化算法产生的粒子位置进行比较,选择好的粒子位置。同时通过谱系聚类方法进行聚类,并且给出新的速度更新公式。最后将算法应用到5个典型的函数优化问题中,并与其它改进的粒子群算法进行比较分析。数值结果表明,该算法提高了全局搜索能力、收敛速度和解的精度。 相似文献
6.
基于粒子群优化算法的数据流聚类算法 总被引:1,自引:0,他引:1
针对当前基于滑动窗口的聚类算法中对原始数据信息的损失问题和提高聚类质量和准确性,在现有基于滑动窗口模型数据流聚类算法的基础上,提出了一种基于群体协作的粒子群优化算法(PSO)的新数据流聚类算法。这种优化的新数据流聚类算法利用改进的时间聚类特征指数直方图作为数据流的概要结构以及应用PSO在聚类过程中对聚类质量的局部迭代优化。实验结果表明,此方法有效减少了内存的开销,解决了对原始数据信息损失的问题。与传统的数据流聚类算法相比,基于粒子群优化算法的数据流聚类算法在聚类质量和准确性上明显优于传统的数据流聚类算法。 相似文献
7.
基于高斯扰动量子粒子群优化的图像分割算法 总被引:2,自引:0,他引:2
研究图像提取问题,在处理由不同种类纹理区域组成的彩色图像时,针对克服量子粒子群优化(QPSO)聚类算法由于早熟现象导致图像分割过程中难以计算出精确纹理区域,为了能准确提取图像目标和提高精度,提出了基于高斯扰动的量子粒子群优化(GQPSO)的新型聚类算法.受益于高斯扰动,GQPSO 改善了 QPSO 固有的多样性下降和陷入局部早熟的问题,而快速逼近全局最优解.对 Berkeley Segmentation 数据库中的 6 幅图像的分割实验结果表明,相比于 PSO 和 QPSO,GQP-SO 的聚类效果和性能均有明显改善. 相似文献
8.
9.
基于粒子群优化的模糊C-均值聚类改进算法 总被引:3,自引:3,他引:3
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM.该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值.仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果. 相似文献
10.
针对骨干粒子群优化(BBPSO)算法易陷入局部最优、收敛速度低等问题,提出了基于核模糊聚类的动态多子群协作骨干粒子群优化(KFC-MSBPSO)算法。该算法在标准骨干粒子群算法的基础上,首先,采用核模糊聚类方法将主群分割为多个子群,令各个子群协同寻优,提高了算法的搜索效率。然后,引入非线性动态变异因子,根据子群内粒子数以及收敛情况动态调节子群粒子变异概率,通过变异的方式使子群粒子重新回到主群,提高了算法的探索能力;进一步采用主群粒子吸收策略与子群合并策略加强了主群与子群之间、子群与子群之间的信息交流,提高了算法的稳定性。最后,利用子群重建策略,结合主群与子群搜索到的最优解,调节子群重建的间隔代数。通过Sphere等6个标准测试函数进行对比实验,结果表明,KFC-MSBPSO算法和经典BBPSO算法以及反向骨干粒子群优化(OBBPSO)算法等改进算法相比寻优准确率至少提高了约11.1%,在高维解空间内测试结果的最佳均值占到83.33%并且具有更高的收敛速度。这说明KFC-MSBPSO算法具有良好的搜索性能与鲁棒性,可应用于高维复杂函数的优化问题中。 相似文献
11.
12.
13.
14.
对于9个典型的复杂BenchMark测试函数,分别利用PSO算法和GuoA算法进行数值计算比较,大量实验结果表明:GuoA算法更具有通用性和坚韧性,在全局收敛趋势方面较优,但是速度相对较慢;PSO算法的收敛速度很快,而且对于某些极难问题更具有优越性,但成功率相对较低,且容易早熟。 相似文献
15.
一种新的双予群PSO算法 总被引:1,自引:1,他引:1
提出一种新的双子群粒子群优化(PSO)算法。充分利用搜索域内的有效信息,通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围。在不增加粒子群规模的前提下,提高解高维最优化问题的精度,降低粒子群优化算法陷入局部最优点的风险。3种典型函数的仿真结果及与2种经典PSO算法的比较结果验证了该算法的有效性。 相似文献
16.
17.
18.
针对k-means算法的聚类结果高度依赖初始聚类中心选取的问题,提出一种基于改进粒子群优化的文本聚类算法。分析粒子群算法和k-means算法的特点,针对粒子群算法搜索精度不高、易陷入局部最优且早熟收敛的缺点,设计自调节惯性权重机制及云变异算子以改进粒子群算法。自调节惯性权重机制根据种群进化程度,动态地调节惯性权重,云变异算子基于云模型的随机性和稳定性,采用全局最优值实现粒子的变异。该算法结合了粒子群算法较强的全局搜索能力与k-means算法较强的局部搜索能力。每个粒子是一组聚类中心,类内离散度之和的倒数是适应度函数。实验结果表明,该算法是一种精确而又稳定的文本聚类算法。 相似文献