首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
大佛寺井田4号煤CH_4与CO_2吸附解吸实验比较   总被引:1,自引:0,他引:1       下载免费PDF全文
以迅速降低大佛寺4号煤含气量,提高地面煤层气井采收率为目标,进行CO2驱替CH4技术的实验研究。对采自大佛寺矿井40114工作面的样品,进行多个温度点柱体原煤与60~80目平衡水样的CH4与CO2吸附解吸对比实验。结果表明:CO2在煤孔隙表面与CH4一致,吸附过程符合Langmuir方程,解吸过程可用解吸式描述;由热力学计算可知,柱体原煤升压过程CO2吸附热为56.827 kJ/mol,CH4吸附热为12.662 kJ/mol,降压过程CO2吸附热为115.030 kJ/mol,CH4吸附热为23.602 kJ/mol,无论升压过程还是降压过程CO2吸附热远大于CH4吸附热,两种气体在煤孔隙表面竞争吸附时CO2占据优势,导致置换解吸;吸附势、吸附空间计算验证了这个结论;利用CO2驱替CH4技术,提高煤层气采收率,理论依据充分可行。  相似文献   

2.
页岩对甲烷高温高压等温吸附的热力学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
李希建  尹鑫  李维维  刘尚平  张培 《煤炭学报》2018,43(Z1):229-235
为了研究页岩在高温高压条件下对甲烷的吸附特性,采用高压等温吸附实验仪,分析了取自贵州岑巩地区天马1井的页岩对甲烷的吸附效果,并根据lausius-Clapeyron方程和Vant-Hoff方程求得甲烷吸附的等量吸附热和极限吸附热,从热力学角度分析甲烷在页岩上的吸附特性。研究结果表明:贵州岑巩地区天马1井页岩对甲烷的等温吸附曲线形态在不同温度条件下基本一致,都存在着明显的极值点;在低压阶段,等量吸附热随吸附量的增加而逐渐增加,平均吸附热为43.59 kJ/mol,表明可能发生了化学吸附;在高压阶段,等量吸附热随吸附量的减少而逐渐升高,表明随压力增加解吸更加困难;通过Vant-Hoff方程计算得到的极限吸附热为39.61 kJ/mol,表明天马1井页岩孔隙表面与甲烷气体之间的相互作用力较强。对于相互作用力较强的页岩,在页岩气开采过程中可以结合注入与页岩孔隙表面作用更强气体的方法来促进解吸,如CO2等气体。  相似文献   

3.
为研究低阶煤中含水率对不同宏观煤岩类型甲烷吸附/解吸的影响,采集大佛寺井田延安组4号煤样品并分离光亮煤与暗淡煤样品,分别采用液氮吸附、扫描电镜、接触角测定以及等温吸附/解吸等试验手段,分析煤样的物质组成、孔隙结构特征、润湿性特征、吸附/解吸等特征;并基于等量吸附热、表面自由能等热力学参数计算结果,从能量角度分析低阶煤中不同宏观煤岩类型的润湿性对甲烷吸附/解吸特征的影响。结果表明:①光亮煤的灰分、水分及氢、氧、氮元素含量低于暗淡煤,而挥发分及碳、硫元素含量高于暗淡煤;光亮煤的表面结构相对简单,接触角为56.3°,暗淡煤的接触角为51.7°,光亮煤的润湿性较暗淡煤差;②升压阶段,空气干燥基煤样的等量吸附热值大于平衡水煤样,且光亮煤的等量吸附热大于暗淡煤;降压阶段,平衡水煤样的等量吸附热小于空气干燥基煤样,暗淡煤的等量吸附热大于光亮煤。此外,无论光亮煤还是暗淡煤,降压阶段的等量吸附热均大于升压阶段的等量吸附热,表明甲烷解吸还需要从外界环境中吸收更多的能量,且降压不能促使甲烷完全解吸,甲烷解吸存在滞后性,本质是吸附和解吸过程能量的差异;③水分子易与煤基质表面断裂的化学键及煤基质内部的亲水性官能团结合,在一定程度上降低了煤的表面自由能,使甲烷-煤吸附系统达到平衡状态所释放的热量更少,并且,水与煤的分子作用力强于甲烷,可以占据煤表面的有效吸附位,使煤吸附甲烷能力变弱。研究结果可为区内后续煤层气高效开发工作提供理论依据。  相似文献   

4.
为了促进煤层气与页岩气在储层评价与开发方式选择上的相互借鉴,进行了煤与页岩吸附甲烷的对比试验。通过多温度点页岩气和煤层气吸附/解吸试验,计算升压过程与解吸过程吸附热差异,发现热演化程度基本一致时,极限吸附热计算结果表明:煤层气在升压吸附时放热量19.148k J/mol,小于降压过程吸热量23.966 k J/mol,降压解吸难以持续;页岩气在升压吸附时放热量44.624k J/mol,大于降压过程吸热量32.656 k J/mol,降压促进吸附/解吸平衡向解吸方向移动。因此,利用排水降压进行煤层气开采时,应重视持续解吸技术的研究。  相似文献   

5.
本文从煤的孔隙结构,煤层甲烷吸附(解吸)的热力学与动力学,煤层中吸附甲烷的赋存状态与扩散机理,煤表面与甲烷分子的相互作用等方面介绍了煤层甲烷吸附(解吸)的研究与发展概况。  相似文献   

6.
甲烷在页岩上的吸附等温过程   总被引:1,自引:0,他引:1       下载免费PDF全文
杨峰  宁正福  张睿  赵华伟  赵天逸  何斌 《煤炭学报》2014,39(7):1327-1332
为了从热力学角度研究页岩吸附甲烷的机理,通过容积法测定35,50和65℃时,0~12MPa下甲烷在页岩上的吸附等温线,采用考虑吸附相体积的修正Langmuir模型处理实验数据,并根据Clausius-Clapeyron方程和vant Hoff方程计算甲烷在页岩上吸附时的等量吸附热和极限吸附热。结果表明:甲烷在页岩上的吸附等温线具有Ⅰ型吸附等温线特征,修正Langmuir吸附模型较好地拟合了吸附数据,拟合的平均相对误差小于4.1%。根据等量吸附线计算的等量吸附热为11.67~16.62 kJ/mol,平均14.58 kJ/mol,说明页岩对甲烷的吸附为物理吸附,并且等量吸附热随甲烷吸附量的增大而非线性递减,表明页岩表面能量的不均匀性,甲烷分子优先吸附在页岩表面的高能吸附位。由vant Hoff方程计算甲烷在页岩上的极限吸附热为23.91 kJ/mol。  相似文献   

7.

为了探究温度对中等程度焦煤中甲烷的吸附解吸特征的影响规律,采用等温吸附实验和甲烷解吸实验分析煤样在不同温度下的变化情况,结合Langmuir模型、等量吸附热、煤表面自由能和解吸量模型对所得实验数据进行分析。结果表明:随着温度的升高,甲烷吸附量及Langmuir吸附常数ab均呈现下降的趋势;煤的吸附是放热过程,伴随着甲烷吸附量的增大等量吸附热随之增加;温度会导致煤表面自由能改变,温度升高煤表面自由能变化值减小,表现为甲烷吸附量减少;解吸曲线具有明显的Langmuir特征,温度升高会促进甲烷解吸,且最初10 min中的解吸速率增速较快。

  相似文献   

8.
水分是制约煤层气吸附/解吸的关键因素之一,受煤储层多元孔隙结构和煤岩组分润湿性差异影响,煤-水-甲烷界面作用导致煤层气产出过程中CH4与H2O相互激励、相互制约。立足于水分对煤层气吸附/解吸作用的研究进展与前沿认识,从煤储层水分赋存状态、煤-水界面微观作用和水分对甲烷吸附/解吸影响3个方面重点分析了水分与煤层气吸附/解吸微观效应之间的内在关系。研究认为煤储层孔隙结构及水分赋存状态复杂。以煤-水界面作用及孔隙结构特征为依据将煤储层水划分为结合水、束缚水和自由水3种主要类型,不同类型水分对甲烷吸附的抑制作用机制存在差异、且对低阶煤的影响程度严重。水分相态变化成为影响甲烷解吸-运移的核心,水蒸汽分子通过竞争吸附置换吸附态甲烷,液态水在润湿性和毛细管力作用下水锁堵孔、抑制气-水运移。在地面煤层气钻采过程中水分的作用机理随储层温度-压力环境动态变化而变化。针对水分对甲烷解吸作用机理不清、影响界限不明的现状,由此提出了量化储层水分含量及分布特征,增强甲烷解吸与气-水运移,完善甲烷吸附/解吸理论与模型,强化水分激励、促进煤层气增产4方面的科学问题及发展方向,进一步深化煤-水界面微观作用在煤层气解吸运...  相似文献   

9.
李庆庆  何倩 《中州煤炭》2018,(12):132-134
为探讨低阶煤煤层气吸附/解吸特征,对大佛寺4号煤进行多温度点的空气干燥基煤样和平衡水样吸附/解吸实验。根据实验结果绘制等量吸附线,由Clausius-Clapeyron方程计算得到升压(吸附)与降压(解吸)过程的吸附热。计算结果表明:平衡水煤样的等量吸附热小于空气干燥基煤样的等量吸附热,说明水分的存在不利于煤层气吸附;在相同吸附量下,降压过程吸附热大于升压过程吸附热,吸附过程中放出的热量不能满足解吸过程中所需的热量。从热力学角度分析了水分对甲烷吸附量的影响以及煤层气解吸滞后于吸附的原因。因此,在实际排采中应考虑到解吸滞后效应的影响,合理制定排采工作制度。  相似文献   

10.
为了研究煤的非均匀势阱分布及其对甲烷吸附/解吸过程的影响,在吸附科学和分子动力学理论基础上建立了非均匀势阱模型。该模型可以表征煤的吸附/解吸性能以及精确计算出煤体内不同势阱所对应的势阱数量。为了验证非均匀势阱模型对煤的吸附/解吸性能方面的表征能力的准确性,将其与Langmuir模型分别对甲烷吸附/解吸过程进行拟合,再将拟合数据和等温吸附线的相关系数分别进行比较。结果表明,非均匀势阱模型在表征煤体的吸附/解吸性能方面更优。在研究煤体内的势阱分布时,发现煤在不同温度压力下对甲烷的吸附/解吸过程中,煤体内的势阱分布出现明显差异。在分析煤的势阱规律时,发现在吸附阶段煤体内的势阱数量比解吸阶段多,但解吸过程中煤的平均势阱深度比吸附过程大。并且平均势阱深度随着煤阶的降低而降低。在吸附阶段势阱数量集中在某个势阱深度的范围内,但在解吸阶段势阱数量的分布相较而言就更分散。在同一温度下,势阱数量随着煤阶的降低而减少。从势阱分布来看,在相同温度下,高煤阶煤的势阱分布方差明显比低煤阶煤的势阱分布方差要大得多。温度上升会使得平均势阱深度随着温度的升高而下降。对于同一煤阶而言,温度的变化对5~15 kJ/mol内...  相似文献   

11.
煤层注水对防突具有显著效果,而煤层孔隙特性是影响瓦斯吸脱附及渗流的重要因素,为了从孔隙角度揭示不同注水压力对原煤体甲烷吸脱附性能的影响。选取首山矿己15-12070工作面进行煤层注水现场实验,使用氮吸附法得出各煤样孔隙特性并用分形理论计算孔隙粗糙度,使用静态容量法测出各煤样吸脱附参数。结果表明:注水后各孔径段孔隙量均有所增加,注水压力与比表面积、孔容及分形维数呈线性正相关关系;孔隙特征参数与甲烷吸脱附性能呈线性正相关关系;各煤样均出现甲烷吸脱附迟滞现象,且注水压力越高,甲烷吸附能力越强,脱附迟滞程度越大。煤层注水压力越大,煤的孔裂隙数量会增多且粗糙度增大,煤体倾向于保留更多的瓦斯。  相似文献   

12.
应用红外测温摄录仪分别对不同压力、不同变质条件下的煤体瓦斯吸附-解吸过程中温度变化进行测量,将红外数据进行小波滤噪后拟合出瓦斯吸附-解吸特征函数曲线。分析得出结论:不同平衡压力下吸附过程中升温趋势符合指数函数关系,解吸过程中降温趋势符合对数函数关系;煤体变质程度也会影响吸附-解吸过程中温度变化特征,煤体变质程度越大,吸附-解吸造成的温度变化幅度越大。拟合函数△T=K(1-et/b)参数K表征了吸附-解吸所引起的煤体温度变化最大值,温度变化最大值与煤体瓦斯解吸量成线性正相关。  相似文献   

13.
熊健  刘向君  梁利喜 《煤炭学报》2017,42(4):959-968
利用巨正则蒙特卡罗模拟方法和分子动力学方法研究甲烷分子在4类黏土矿物(蒙脱石、高岭石、伊利石和绿泥石)中赋存微观结构和微观吸附机理,并研究不同孔径和不同压力对甲烷在4类黏土矿物中吸附行为的影响。研究结果表明:甲烷的平均等量吸附热随着孔径增大而下降,且小于42 k J/mol,证明甲烷在黏土矿物中的吸附属于物理吸附;甲烷分子受到黏土矿物孔壁面势能作用影响,在孔壁面附近区域聚集从而形成吸附层,其为吸附相,而远离孔壁区域,受到孔壁面势能较弱或未受到孔壁面势能作用影响,甲烷分子分散于孔中,其为游离相;甲烷分子在不同类型黏土矿物不同尺度的孔隙中赋存状态存在差异;黏土矿物微孔中,甲烷吸附量随着孔径增大而增大,而中孔中,甲烷吸附量随着孔径增大而减小;从微观角度来看相同孔径中,不同类型黏土矿物对甲烷近似有相同的吸附能力,但是宏观角度来看不同类型黏土矿物样品对甲烷的吸附能力差异较大,说明不同类型黏土矿物样品对甲烷吸附能力主要通过比表面积因素来影响;甲烷分子在孔中吸附气量所占比例随着压力增大或孔径增大而呈下降趋势。  相似文献   

14.
针对瓦斯在煤中的解吸与吸附过程并非完全可逆,吸附解吸迟滞现象非常普遍,分析了以往研究中存在的问题,提出了关于吸附解吸迟滞程度的定量评价指标,通过等温吸附解吸实验考察了最高吸附压力和煤体粒径与迟滞程度的关系,并讨论了吸附解吸迟滞现象的发生机理及其对于深部煤层气开发的影响。结果表明:新的定量评价指标可以反映吸附解吸迟滞从完全可逆至完全非可逆的程度;随着最高吸附压力和煤体粒径的增加,吸附解吸迟滞程度随之增强;吸附解吸实验结果是综合了扩散作用的扩散-吸附及解吸-扩散结果,且这两个过程很难区分开来;实验发现的该现象是由于气体分子在高压作用下嵌入连通性较差的微孔中并引起孔隙变形,被吸附的气体分子受窄小的孔隙通道限制,无法从孔隙中解吸并扩散出来而导致的,即本文提出的"扩散受限"假说;深部煤层气的气体含量可能会很高,但受解吸迟滞现象影响,其真正的可采储量和产出规律需要利用等温解吸线而非等温吸附线进行评估;除了通过增透措施提升煤体的渗透率外,如何促进微尺度下的气体解吸与扩散也应该成为深部煤层气开发需要着重考虑的问题之一。  相似文献   

15.
为揭示不同粒径下煤样的瓦斯吸附热力学特性,选择典型矿井煤样进行不同粒径、温度条件下的瓦斯等温吸附实验,利用Clausius-Clapeyron方程计算出各煤样等量吸附热; 根据Langmuir方程建立了含标准平衡压力常数的瓦斯吸附自由能方程,得到其吸附自由能; 通过Gibb-Helmholtz方程获得各煤样的吸附熵。研究结果表明:不同粒径、温度影响因素下的煤体瓦斯吸附过程依旧可用Langmuir方程表征; 不同粒径煤样瓦斯等量吸附热、吸附自由能和吸附熵均小于0,变化范围分别为-14.19~-22.27 kJ/mol、-4.83~-6.72 kJ/mol和-28.20~ -51.32 J/(mol·K); 随着粒径增大,煤样瓦斯等量吸附热、吸附自由能、吸附熵均增大; 随着温度升高,煤样瓦斯吸附自由能、吸附熵逐渐降低。实验结果表明,煤体瓦斯吸附过程是一种放热、自发、熵减小的物理吸附过程。  相似文献   

16.
针对目前我国煤层气开发中存在的产气率低、煤层气开采理论规律研究欠缺等问题,根据试验对比分析了不同温度15、20、25、30℃时,CO2、CH4和N2在煤岩中的吸附/解吸规律。试验结果表明,当温度升高时,气体分子的平均自由程越大,气体吸附量变小;对同一种煤介,当压力相同时,临界温度高的气体,具有较强的吸附能力,煤层对CO2、CH4和N2吸附能力依次下降;压力升高时,煤层对气体的吸附量变大;降压解吸过程存在解吸滞后现象,温度降低显著,这与吸附、解吸表达式和吸热反应有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号