首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
煤直接液化残渣与褐煤共热解动力学研究   总被引:1,自引:0,他引:1  
为了解决煤炭液化残渣在热解过程中软化熔融并剧烈膨胀导致难以利用的问题,在温度范围为30 ~900℃,升温速率分别为10、20、30、40℃/min的情况下,借助热重分析仪对煤直接液化残渣与褐煤进行程序升温共热解试验,采用Doyle法分析共热解动力学,将动力学结果与共热解协同作用进行关联.结果表明:共热解过程可用3个串联的一级反应描述,温度区间分别为200 ~310、310~470、470~900℃,其中310 ~470℃对应共热解反应的活泼分解阶段,反应活化能(40 ~ 50 kJ/mol)远大于低、高温反应活化能(10 ~20 kJ/mol).液化残渣与褐煤共热解降低了活泼分解阶段的反应活化能,加快了反应速率,增大了热解失重率,使共热解反应在300 ~550℃表现出正协同作用.  相似文献   

2.
为了探究贫煤煤样的氧化燃烧热效应及热动力学行为,分别采用C80微量热系统和热重实验装置对样品进行测试;分析了贫煤煤样在低温氧化及氧化燃烧过程中的热效应,同时也研究了升温速率对贫煤燃烧过程的影响,最后对煤样燃烧过程中的表观活化能和最概然机理函数进行了分析。结果表明:贫煤的低温氧化过程可划分为缓慢氧化阶段、加速氧化阶段和快速氧化阶段;随着升温速率的升高,煤样的TG/DTG曲线向高温区域移动,DTG曲线峰值升高,燃点温度升高;煤粉在热解燃烧阶段的表观活化能随转化率的增加呈现出先升高后下降的趋势,在转化率为0.2时表观活化能达到最大值,为32.4 kJ/mol;升温速率对反应最概然机理函数影响较小,4种升温速率下的反应最概然机理函数均符合A-E方程随机成核和随后生长模型,且函数曲线峰值随升温速率的升高而增大。  相似文献   

3.
为研究褐煤热解特性及动力学参数分布规律,采用热重质谱联用分析仪(TG-MS)对锡林郭勒褐煤进行不同升温速率下的热解实验,研究了不同升温速率下煤样的热失重规律、CO和H_2析出过程的变化规律,并对热解气体产物热值及未冷凝气体效率进行了计算。实验结果表明:煤样热解初始阶段,不同升温速率下水分析出速率相等,与热解升温速率关系不大。随着热解时间延长,煤样的质量逐渐降低。不同升温速率下热解煤样最终残留质量相差不大,平均剩余为6.51mg。热解转化率较小时,活化能E值较大,指前因子A较高。随着热解转化率的逐渐增大,反应活化能呈现降低趋势,这表明随着热解温度的升高,煤中分子吸收能量后克服反应势垒差值降低,热解反应速率增大。CO和H_2释放过程可大致分为三个阶段,且析出峰温随着升温速率增大向高温段移动。热解气体产物热值和未冷凝气体效率呈波浪状变化趋势。  相似文献   

4.
神华煤及其直接液化残渣热解动力学试验研究   总被引:1,自引:1,他引:0  
为研究神华煤和神华煤直接液化残渣的热解过程,对神华煤和神华煤直接液化残渣在不同的升温速率下进行了热重分析.根据不同升温速率的热解试验结果,采用分布活化能模型(Distributed Activation Energy Model,DAEM)对神华煤和残渣的热解动力学进行了分析,得到了热解动力学参数活化能和反应速率常数.研究表明:神华煤热解的活化能为53.98~279.38 kJ/mol;神华煤直接液化残渣热解活化能约为170 kJ/mol.对神华煤和残渣热解失重率随温度变化的试验曲线和模拟计算所得曲线进行比较,发现神华煤和神华煤直接液化残渣的试验曲线和模拟曲线重合较好,说明DAEM模型能够较准确地描述神华煤和神华煤直接液化残渣的热解过程.  相似文献   

5.
为提高生物质热解油的利用效率,探究生物质热解油在提质转化过程中的热解特性,进一步拓宽生物质热解油的利用途径,选取2种木质纤维素类生物质热解油作为研究对象,采用热重分析仪分别考察2种生物油的热解行为。选用Friedman法、FWO法2种等转化率方法求取生物质热解油整体热解反应的动力学参数,选用分布活化能模型(DAEM)法将生物质热解油热解过程分为轻质组分和重质组分2种虚拟组分热解过程,并求取2种虚拟组分热解的动力学参数。2种生物油的轻重组分含量差异导致2者的热解行为表现出不同特征,木屑热解生物油的最大质量变化速率对应温度和热失重反应结束温度均高于稻壳热解生物油。Friedman法计算所得2种生物油的活化能分别为89.92、145.98 kJ/mol,FWO法计算所得2种生物油的活化能分别为90.30、138.44 kJ/mol,2种方法计算结果具有较好的一致性;木屑热解生物油的平均活化能(142.21 kJ/mol)高于稻壳热解生物油(90.11 kJ/mol)。进一步采用DAEM方法将2种生物油热解过程分别分为轻质组分热解和重质组分热解,两组分DAEM方法动力学计算结果表明稻壳热解生物...  相似文献   

6.
为有效防治唐家会矿煤自燃灾害,利用热重实验,分析了煤样在不同升温速率和不同氧气体积分数下热反应动力学特征。结果表明:在相同氧气体积分数下,升温速率2、5、10℃/min煤的表观活化能分别为150.27、131.97、106.86 k J/mol;相同升温速率下,氧气体积分数为6%、9%、12%、15%、18%、21%煤的表观活化能分别为106.86、120.61、127.31、131.58、135.26、136.82kJ/mol,表观活化能随着升温速率和氧气体积分数的增大而减小,变化规律基本符合对数函数递增;活化能动力学计算结果揭示了不同升温速率和不同氧气体积分数下,燃烧阶段煤氧复合反应程度不同。  相似文献   

7.
为构建矿井胶带火灾早期预警体系,防控巷道外因火灾事故,利用热重—傅里叶红外光谱联用实验,结合热解动力学,研究5、10、15、20 K/min 4种升温速率下胶带的热解历程。结果表明:不同升温速率下的热重(TG/DTG)曲线、气体产物等具有相似规律和趋势,随升温速率增加各参量特征值向高温方向滞后;胶带热解经历2个明显失重阶段,第一失重阶段发生交联缩聚热解反应,活化能E在105~107 kJ/mol,指前因子为15.92 min-1,第二失重阶段发生脱链解聚热解吸热反应和挥发分氧化放热反应,活化能E在130~220 kJ/mol,指前因子为37.13 min-1,高于第一失重阶段,两阶段热解过程可用Avrami-Erofeev方程表征。  相似文献   

8.
炼焦煤尾煤热解特性及动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于炼焦煤尾煤和原煤的热解实验对比,研究热解终温、升温速率和高矿物质含量对炼焦煤尾煤热解特性的影响,并求解炼焦煤尾煤热解的动力学参数。结果表明:热解终温和升温速率对炼焦煤尾煤的热解过程有重要的影响,高温有利于尾煤中高分子有机物裂解和挥发分析出,但高矿物质含量使尾煤热解在850 ℃后终温作用不明显;炼焦煤尾煤中矿物质含量对其热解具有抑制作用,使尾煤热解过程向高温段推移;炼焦煤尾煤的热解过程可以用3个二级反应描述,通过动力学参数拟合计算结果得出炼焦煤尾煤热解反应活化能为54.7~131.1 kJ/mol。  相似文献   

9.
煤及其显微组分热解特性研究   总被引:1,自引:0,他引:1  
选取4种不同变质程度的煤类,对原煤及其显微组分进行了热解特性研究,利用最大失重速率评价了原煤及其显微组分富集物的热解反应性,并采用一级反应模型、Doyle积分法求取了样品的动力学参数.动力学分析结果表明,由于样品热解各段的反应历程不同,因此求取的热解动力学参数也不同,4种原煤及其显微组分主要热解段的表观活化能介于35.93 kJ/mol~63.84 kJ/mol.  相似文献   

10.
为了研究烟煤升温速率对热解过程的影响,使用热重分析仪对烟煤样品进行了热解。研究了烟煤在不同升温速率下(20、30、40和50℃/min)升至终温为1 000℃的热解过程,并采用Coats-Redfern二级反应来分析煤的热解过程,对热解反应的主要热解阶段和二次脱气阶段进行线性拟合,得到热解反应的特征参数。研究表明:烟煤的挥发分的快速释放在热解的初始阶段(0℃~200℃),在200℃~600℃为烟煤的主要热解阶段,在600℃~1 000℃为烟煤的第二次脱气阶段。不同的升温速率下烟煤热解的最终失重情况比较接近,高升温速率能够加剧热解反应过程。  相似文献   

11.
为了简化活性焦的制备工艺流程,降低其生产成本,同时拓宽准东褐煤利用途径,需要对准东褐煤热解过程进行更深入的研究。利用热重(TGA)技术考察了准东褐煤在不同升温速率(10,20,30,40和50 ℃/min)热解失重特性并采用等转化率法分析了其动力学参数,同时利用程序升温和快速热解在终温为800 ℃条件下制备出活性焦SC1和SC2。采用氮吸附仪(BET)获得煤焦的孔隙结构参数,利用红外吸收光谱仪(FT-IR)和拉曼仪光谱仪(Raman)分别获取煤焦大分子结构中的官能团和碳骨架结构信息。研究结果表明,基于热重法分析出准东褐煤热解动力学参数,活化能和指前因子变化范围为38.89~229.13 kJ/mol和108.26~1.18×109 s-1。升温速率为30 ℃/min时,有足够热量促进煤焦内部有机结构分解生成大量挥发分,煤焦内部形成合理的温度梯度,阻碍了热缩聚反应造成孔隙阻塞,挥发分顺利释放促进了孔隙结构形成。程序升温热解焦SC1烧失率为46.5%,比表面积为312.91 m2/g,孔容为0.178 cm3/g,平均孔径为2.271 nm;而快速热解焦SC2烧失率为37.3%,比表面积达到424.25 m2/g,孔容为0.189 cm3/g,平均孔径2.342 nm,以微孔为主,结构参数明显好于SC1。快速热解炭化制备活性焦前驱体,促进煤焦生成大量无定形结构和缺陷结构,利于活化阶段微孔孔隙结构的构筑。  相似文献   

12.
贾海林  余明高 《煤炭学报》2011,36(4):648-653
为研究煤矸石绝热氧化过程的具体失重阶段和失重特征温度点,采用综合热分析仪研究了不同工况下氧气浓度和升温速率对煤矸石绝热氧化进程的影响。实验结果表明:煤矸石在不同工况下的绝热氧化失重过程可划分为4个阶段,即外在水分失水失重阶段、内在水分失水失重阶段、挥发分燃烧失重阶段和固定碳燃烧失重阶段。在同一氧气浓度(20%)下,随着升温速率的提高,煤矸石绝热氧化的TG曲线向高温区偏移,4个阶段的特征温度点(起点、中点、拐点和终点)随升温速率的增大而线性增大,挥发分和固定碳燃烧失重阶段的最大燃烧速率呈增大趋势,但各个阶段的质量变化基本相同。在同一升温速率(10.0 ℃/min)情况下,随着氧气浓度的提高,煤矸石绝热氧化的TG曲线向低温区偏移,外在水分和内在水分失水失重阶段的特征温度点(起点、中点、拐点和终点)和失重质量基本不受氧气浓度增大的影响,挥发分和固定碳燃烧失重阶段的特征温度点(起点、中点、拐点和终点)随氧气浓度的增大而降低。  相似文献   

13.
马砺  王伟峰  邓军  张辛亥  王振平 《煤炭学报》2014,39(Z2):397-404
为了掌握CO2气体防治煤自燃的特性,采用TG-DSC联用分析系统测定煤样在不同CO2体积分数、不同升温速率时反应引起的质量、能量变化,研究CO2对煤升温氧化燃烧过程的影响。通过分析煤升温氧化燃烧过程的TG-DSC曲线,确定了煤氧化燃烧过程的特征温度变化规律,实验表明:煤样变质程度越高,TG曲线越向温度高的方向移动;特征温度T1,T2,T3在不同CO2/空气混合条件下失重曲线差异较小,在失重温度T4时,CO2体积分数越大,其TG,DTG曲线差异越大,着火温度、质量变化速率最大温度点及燃烬温度点延后。CO2体积分数影响了煤样放热强度,CO2体积分数越低,DSC曲线越陡,放热强度越高;CO2体积分数越高,曲线平缓,放热量小,燃烧点放热峰向高温区移动,反应得到了抑制。通过动力学分析计算得出:煤样在空气氛围下的活化能和频率因子均大于在通入CO2气体后,随着CO2体积分数的升高,表观活化能和指前因子减小速度加快,但反应速率常数也减小,表明CO2抑制了煤的氧化燃烧。  相似文献   

14.
煤的反应中绝大部分化学能在焦炭反应阶段释放或转化,相关研究中采用多种方法在不同环境条件下制焦以进行后续研究,而煤焦反应性又受热解条件影响很大。为研究制焦条件对煤焦燃烧反应性的影响,本文在不同热解温度下分别采用马弗炉、管式炉和鼓泡床3种方法制焦,利用热重分析法(TGA)比较各焦样的燃烧反应性,并借助化学渗透析出(Chemical Percolation Devolatilization,CPD)模型和单颗粒传热模型,对各条件下煤颗粒的热解进程,如颗粒温度、挥发分析出总量、残余旁链结构份额等随时间变化规律进行了模拟。主要内容包括:①实验结果表明,热解环境温度越高,煤焦着火延迟,燃烧反应性越低,即存在"热失活"现象。而从CPD模型计算结果可以看出,热解温度越高,最终析出的挥发分总量越高(煤样工业分析结果也验证了残留在焦炭中的挥发分物质含量随热解温度升高而减小),且残留在碳网中的旁链结构份额越少,反映出酚羟基、羰基、脂肪侧链等的裂解加剧,减少了焦炭表面反应活性位点数量,可能是导致煤焦"热失活"的主要原因之一。另外,对各焦样的孔隙结构测量表明,热解温度越高,微孔与中大孔的相对比例逐渐减小,大量微孔相互缩并,导致孔隙直接连通率降低,气体扩散阻力增大,同样不利于焦炭燃烧。②不同制焦方法对煤焦反应性同样存在很大影响,相同热解温度下,鼓泡床、管式炉和马弗炉制得焦样的燃烧反应性依次降低。模型计算表明,马弗炉、管式炉和鼓泡床内煤样升温速率依次增大,煤焦反应性的差异可能与热解升温速率及热解气氛有关。对此,CPD模型尽管反映出热解进程不同,但热解终态3者近似相同,尚无法解释制焦方法对煤焦反应性的影响,还有待后续进一步研究。  相似文献   

15.
煤自燃受到多种因素影响,为了研究煤与氧气反应的机理,通过热重(TG)实验测试了褐煤、1/3焦煤和无烟煤在不同氧气体积分数条件下的自燃特性,分析了煤样氧化过程的特征温度、质量损失、热效应及热反应动力学参数.研究结果表明:不同煤阶的煤样对氧气的化学响应特征不同,煤阶越高,越难以发生氧化反应,体现为特征温度增大,放热峰值减小...  相似文献   

16.
为研究褐煤半焦的高效洁净利用及其燃烧性能的判别,模拟工业生产中煤炭热解外热式直立炭化炉,组装煤炭热解实验装置对内蒙褐煤进行热解。采用热重分析法对半焦/煤进行燃烧性能研究,探讨了影响褐煤热解半焦燃烧性能的主要因素,并对半焦与煤的燃烧性能进行比较。结果表明:热解条件是影响半焦燃烧性能的重要因素,随热解温度的升高和热解时间的延长,内蒙褐煤热解半焦的燃烧性能变差;半焦的燃烧性能与其本身的质量参数相关,用半焦的燃料比可以准确预测半焦的燃烧性能;对比半焦与煤的燃烧性能,发现内蒙褐煤热解半焦的燃烧性能“异常”好,其主要原因是内蒙褐煤半焦具有发达的孔隙结构,碳的活性高,其性质类似于木炭,有优异的燃烧性能。  相似文献   

17.
Waste print circuit board containing 11.38% Br was pyrolyzed in vacuum.Thermal stability of waste print circuit board was studied under vacuum condition by thermo-gravimetry(TG). Vacuum pyrolysis of WPCB was studied emphasizing on the kinetics of WPCB pyrolysis reactions. Based on the TG results, a kinetic model was proposed. Kinetic parameters were calculated for reaction with this model including all stages of decomposition. The average activation energy is 68 kJ/mol with reaction order 3. These findings provide new insights into the WPCB thermal decomposition and useful data for rational design and operation of pyrolysis.  相似文献   

18.
生物质半焦微波诱导CH4/CO2重整反应动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究微波辐射下CH4/CO2重整反应的动力学规律,在微波加热综合实验系统上使用生物质微波热解初生半焦进行CH4/CO2重整的实验研究。通过实验结果的比较和统计分析方法的验证,筛选出合适的重整反应动力学模型,进而利用该模型开展动力学特征值的计算与结果分析。计算得到,微波加热和常规加热方式下重整反应的活化能分别为29.40 kJ/mol和54.97 kJ/mol。相比于传统方式下的重整反应,微波辐照半焦诱导重整反应的活化能降幅达到46.5%。分析认为,微波辐射下“热点效应”是降低重整反应活化能的主要原因。  相似文献   

19.
煤矸石热解特性及热解机理热重法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
冉景煜  牛奔  张力  蒲舸  唐强 《煤炭学报》2006,31(5):640-644
利用热重法研究了5种不同产地的煤矸石,在不同热解温度、样品粒度、升温速率时其热解过程及特性,得出了煤矸石的热解特征温度和热解特性参数.并对煤矸石的热解机理进行了分析,得到煤矸石的热解机理方程式和反应动力学参数.结果表明:热解温度、煤矸石种类、样品粒度和升温速率对煤矸石热解过程及特性有重要影响;煤矸石在热解初始阶段,热解反应服从三维球形扩散机制,并且其挥发分不易析出,活化能比较高,随着温度提高,挥发分大量析出,活化能有所降低;煤矸石热解第2阶段受液化反应控制,服从级数为3/2的化学反应,对于发生二次反应的煤矸石,在热解后期,二次挥发分析出需大量能量,活化能比较高.  相似文献   

20.
韦岩松  黎铉海  马宸 《金属矿山》2014,43(3):165-170
为了提高硫化铟的浸出率,从研究硫化铟常规酸浸、高锰酸钾或双氧水氧化酸浸的晶粒参数、表观活化能、反应级数的变化规律入手,对不同状态下硫化铟的浸出动力学进行了研究。结果表明:①硫化铟浸出反应的表观活化能、反应级数、晶粒参数,在常规酸浸状态下分别为35.6 kJ/mol、0.770、0.576,高锰酸钾氧化酸浸状态下分别为13.9 kJ/mol、0.390、0.366,双氧水氧化酸浸状态下分别为17.5 kJ/mol、0.220、0.466。②硫化铟常规酸浸的铟浸出率对浸出温度、硫酸初始浓度的变化比较敏感;而硫化铟氧化酸浸的表观活化能和反应级数均大幅度下降,化学活性显著增强,反应速率明显加快,浸出温度和硫酸初始浓度对铟浸出影响的敏感度下降。③硫化铟的常规酸浸及氧化酸浸动力学模型符合n<1的Avrami方程,常规酸浸受化学反应与扩散混合控制,而氧化酸浸则受扩散控制,因此,强化搅拌扩散有利于提高铟浸出率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号