首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 250 毫秒
1.
为了查明煤层气开发中有效应力变化对含水中阶煤储层渗透性的影响,对黔西松河区块1+3号煤层的同一煤柱重复开展了应力敏感性试验,分析了重复荷载作用与饱水压力对煤储层渗透率及应力敏感性的影响机理,并探讨了煤层气井储层改造与排采优化措施。研究表明:重复荷载作用与煤样饱水压力共同影响着中阶煤储层气测渗透率及应力敏感性。随着重复荷载次数增加,煤体发生塑性-弹性变形演化,应力敏感性逐渐减弱,渗透率不可逆损害率降低。与10 MPa饱水压力相比,20MPa饱水煤样初始气测渗透率显著降低,应力敏感性减弱并逐渐趋于稳定。中阶煤储层微观孔裂隙发育,渗透率应力敏感性强,煤层气开发工程中应重视煤储层保护。  相似文献   

2.
煤储层应力敏感性及影响因素的试验分析   总被引:13,自引:0,他引:13       下载免费PDF全文
孟召平  侯泉林 《煤炭学报》2012,37(3):430-437
采用鄂尔多斯盆地东南缘高煤级煤储层样品,通过煤样的应力敏感性试验,分析了煤储层应力敏感性及有效围压、煤中裂隙和含水情况等对煤储层应力敏感性的影响。研究结果表明:煤储层渗透率随有效应力的增加按负指数函数规律降低,当有效应力从2.5 MPa增加到10 MPa时,煤样无因次渗透率为0.10~0.28,平均低于0.15,渗透率损害率为71.92%~90.14%,平均为84.59%。在有效应力小于5 MPa时,煤储层渗透率随有效应力增加快速下降,应力敏感性最强;有效应力在5~10 MPa时,渗透率随有效应力增加而较快下降,应力敏感性较强;而当有效应力大于10 MPa后,渗透率随有效应力的增加下降速度减缓,应力敏感性减弱。含裂隙煤样初始渗透率较高,且应力敏感性相对较小;但在升压过程中产生不可恢复的塑性变形大,导致降压后不可逆损害率相对较高。同样,含水煤样的渗透率随有效应力的增加而快速下降,含水条件下的应力敏感性也更明显。  相似文献   

3.
沁水盆地南部煤层气井排采储层应力敏感研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为分析煤层气排采不同阶段煤储层应力敏感性及渗透率变化的影响因素,采集沁水盆地南部煤样,开展了不同实验条件的应力敏感实验。结果表明:有效应力从0增加到10 MPa时,煤样渗透率减少了50%~70%;有效应力从10 MPa增加到20 MPa时,损失量仅约占初始渗透率的10%;有效应力低于2.5 MPa时,应力敏感性较强;有效应力增加到3.5 MPa的过程中,渗透率损害系数急剧上升,渗透率损耗为20%~30%;有效应力从2.5 MPa增加到9 MPa时,应力敏感性最强,有效应力从3.5 MPa上升至9 MPa时,渗透率损害系数快速下降,渗透率损耗约60%;有效应力自9MPa之后,渗透率损害系数缓慢下降,渗透率损耗约10%;渗透率损害率介于30%~65%,临界应力为7~11 MPa。有效应力较低且不变时,煤样渗透率随孔隙压力增加而增加。围压不变时,随有效应力下降和孔隙压力增加,煤样渗透率下降,这与有效应力和孔隙压力变化引起的煤储层渗透率变化量有关。  相似文献   

4.
覆压下煤的孔渗性实验及其应力敏感性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
孟雅  李治平 《煤炭学报》2015,40(1):154-159
采用沁水盆地南部煤样,通过覆压下煤的孔隙度和渗透率实验分析,建立了高煤级煤样孔隙度、渗透性与有效应力之间的相关关系和模型;采用渗透率损害率和应力敏感系数分析了高煤级煤储层的应力敏感性。研究结果表明:煤样孔隙度和渗透率随着有效应力的增加按负指数函数规律降低。在有效应力小于5或6 MPa,煤储层应力敏感系数变化较大,且煤储层应力敏感系数随有效应力增加而快速下降;渗透率损害率随有效应力的增加而快速增大,应力敏感性强;而在有效应力大于5或6 MPa时,煤储层应力敏感系数随有效应力的增加下降速度整体减缓,且存在一定波动变化,应力敏感性减弱,同时渗透率损害率随有效应力的增大而增加较为缓慢。  相似文献   

5.
以山西潞安矿区大平煤矿3号煤层为研究对象,利用HB-2型煤岩样孔渗吸附测量装置,系统探讨了煤渗透率对孔隙压力以及围压的响应规律,定量分析了受载煤样渗透率与孔隙压力及围压之间的关系。结果表明:在低气压条件下煤样渗透率随孔隙压力的增加符合幂函数降低趋势,孔隙压力在临界值1.5 MPa以下时,煤样渗透率更敏感;孔隙压力恒定条件下,煤样渗透率随围压的升高呈幂函数降低趋势,渗透率降幅明显,多高于85%;煤储层应力的变化会对煤渗透率产生50%以上的不可逆损伤,煤体加卸载过程中的渗透率衰减率随着围压升高整体趋势是向下的衰减规律,其局部变化为不仅1个极值的波动特征。  相似文献   

6.
利用自主研发的含瓦斯煤热流固耦合三轴伺服渗流装置,在有效应力保持恒定的情况下,分别测定了不同温度条件下型煤及原煤的渗透率,并比较了温度对2种煤样渗透率的影响规律。由于不同煤样的渗透率存在显著差异,为了消除个体差异,定义了温度敏感性系数,该系数可以反映煤样渗透率对温度的敏感性。通过温度敏感性系数的定义,进一步研究了2种煤样的渗透率对温度的敏感性的差异。研究结果表明,当有效应力一定时,2种煤样的渗透率均随着温度的升高逐渐降低,变化规律近似服从负指数函数关系;在相同试验条件下,型煤的渗透率远大于原煤;当有效应力一定时,2种煤样的渗透率对温度的敏感性均随着温度的升高逐渐降低,原煤的渗透率对温度的敏感性高于型煤。  相似文献   

7.
陈刚  秦勇  杨青  李五忠 《煤炭学报》2014,39(3):504-509
通过开展鄂尔多斯盆地东缘高中低煤阶不同含水饱和度煤储层应力敏感性实验,研究了煤储层渗透率动态变化规律及其对煤层气产出的影响。实验结果证实:不同煤阶煤储层渗透率随有效应力的增加均呈现负指数函数降低的规律。在有效应力小于5 MPa时,煤储层渗透率随有效应力增加快速下降73%~95%,平均87%,煤储层应力敏感性最强;有效应力在5~10 MPa时,渗透率随有效应力增加而较快下降5%~18%,平均10.4%,煤储层应力敏感性较强;而当有效应力大于10 MPa后,渗透率随有效应力的增加下降速度减缓,应力敏感性减弱。实验结果表明中高煤阶煤储层应力敏感性随有效应力增加要弱于低煤阶。随着煤样含水饱和度的增加,煤储层应力敏感性也逐渐增强。根据煤储层渗透率动态变化规律提出了煤层气井排采过程中应遵循缓慢—保压—持续的排采工作制度,才能获得煤层气最大产出量。  相似文献   

8.
以沁水盆地南部寺河矿3#煤为研究对象,通过煤样的有效应力敏感性实验,分析了煤岩渗透率与应力的相关关系,并对煤储层渗透率与应力的耦合计算模型进行验证。研究结果表明:煤岩渗透率与有效应力具有明显相关性,随着有效应力的增加,煤岩渗透率呈负指数衰减;裂隙是影响煤储层渗透率对有效应力敏感性的重要原因,且在有效应力大于9.45 MPa以后裂隙基本闭合,导致渗透率对应力不敏感。煤岩储层应力的变化会对煤岩及其孔裂隙结构产生塑性(破坏性)变形,致使煤储层渗透率发生不可逆下降,不可逆程度多高于50%。孔裂隙塑性变形主要发生在应力敏感区和过渡区,且由应力敏感区向过渡区过渡时,衰减无因次渗透率值会出现1个"波谷";由应力过渡区向不敏感区过渡时,衰减无因次渗透率值会出现1个"波峰"。  相似文献   

9.
利用KDZS-Ⅱ型煤体瓦斯瞬时解吸及渗流特性测试仪在0.31、0.61 MPa气体压力条件下,开展了新景矿3号煤层渗透率对有效应力敏感性实验分析。结果表明:新景矿3号煤层渗透率对有效应力具有极强的敏感性,煤层渗透率随有效应力增加而降低,二者之间具有良好的负指数幂函数关系;相同气体压力和有效应力下各煤样试件的渗透率变化不同且分异现象显著;煤样试件的渗透率大小与孔隙度、裂隙方向密切相关,煤样试件裂隙方向平行于轴线方向、孔隙度大时,煤样试件的渗透率相对较大;煤样试件的裂隙方向垂直于轴线方向、孔隙度较小时,煤样试件的渗透率相对较小。  相似文献   

10.
代嘉惠 《煤炭技术》2020,39(6):122-125
为了探讨煤体渗透率的影响因素,利用损伤煤岩体渗流试验系统,进行了不同轴压、围压和瓦斯压力下煤体渗透率的渗流试验。试验结果表明:煤样在相同围压条件下时,渗透率与轴压的关系符合二次多项式函数;煤样在相同轴压条件下时,渗透率与围压的关系符合幂函数;在相同应力情况下,煤样的渗透率随瓦斯压力的升高先降低后升高,呈现"V"字形变化趋势,煤样的临界瓦斯压力值随煤样应力值的增大而增大;煤样轴向渗流的渗透率对围压的敏感性远大于轴压,渗透率对围压的敏感性大约是对轴压的敏感性的8.5倍。  相似文献   

11.
孟召平  侯安琪  张鹏  郝海金  武杰 《煤炭学报》2017,42(10):2649-2656
采用沁水盆地3个典型煤矿中、高煤阶煤样,开展了实验室煤样流速敏感性实验,分析了不同流速条件下煤样渗透率的变化规律,建立了煤储层渗透性与流速之间的关系和模型,揭示了中、高煤阶煤储层流速敏感性的控制机理。研究结果表明,煤样渗透率随流速发生变化,且存在一个临界流速。在临界流速之前随着注入流量(或流速)的增加煤样渗透率增加,当流速超过临界流速后,煤样的渗透率随着流体流速的增加反而减少。煤储层流速敏感性主要受控于煤储层物性和煤中速敏矿物。随着煤储层孔隙度、渗透率和流体流量的增高,煤储层速敏损害率按对数函数关系增高。实验煤样黏土矿物占矿物质含量为66.63%~99.89%,主要以高岭石、伊利石为主,存在潜在的速敏伤害,速敏实验结果表明,本区实验煤样存在不同程度的速敏损害,煤样速敏损害程度由弱至中等偏强,临界流速低。随着煤中黏土矿物含量的增加,煤储层速敏损害率也增高。在煤层气井排采过程中,寺河煤矿和西山煤矿煤层气井排采降速应为赵庄煤矿的6倍左右。  相似文献   

12.
中低阶煤层气资源丰富,占全国煤层气预测资源量的26%。煤储层中含有诸多微裂隙,在储层的应力状态发生变化时,储层内部结构发生改变,储层的物性参数随之改变,煤层表现出明显的应力敏感性。为了研究煤岩渗透特性,选取山西晋城裂缝发育良好的煤岩,采用岩石力学三轴实验系统,通过施加不同驱动压力、不同有效应力,探究了不同驱动压力、不同有效应力下储层渗透率变化规律。结果表明,驱动压力不变的条件下,随着有效应力的增加,煤岩岩芯的渗透率降低,当有效应力由0.5 MPa增大到2.0 MPa时,渗透率降低60%以上;在有效应力不变的条件下,随着驱动压力的增加,煤岩岩芯的渗透率呈指数形式降低。  相似文献   

13.
煤层的保护研究首先要进行储层速度敏感性研究,而许多煤层气藏的储层是低渗低孔储层,采用常规的方法无法测试,为了了解致密煤层的实际情况,尝试使用气体作为流动介质进行储层速敏性实验研究。以山西某致密煤层气藏岩心为研究对象,分别采用模拟地层水和高纯氮气为驱替介质进行了速度敏感性实验,并对2种测试方法及结果进行研究与分析。研究结果表明:渗透率越低的区块渗透率损害程度越不明显,采用二次气测速敏实验法得出的渗透率与液测渗透率基本是一致的。因此,对于致密气藏进行速度敏感性实验研究,可以考虑用气测替代液测实验评价。  相似文献   

14.
温度及应力对成型煤样渗透性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用吉林华兴矿煤制成成型煤样,在ZYS-1型三轴渗透仪上对型煤试样进行渗流试验。通过试验研究了围压、轴压及温度对成型煤样的渗透率影响,结果表明:① 随着围压增加,煤样渗透率降低。② 偏应力对煤渗透率有很大影响。在围压条件下,随着偏应力(轴压)增加,煤样先发生弹性压缩,渗透率降低,当偏应力增加到一定程度,煤样破坏,伴随着剪切扩容及孔隙和裂隙空间增加,渗透率随之增加。因此,低围压下煤样的渗透率呈“V”型变化,高围压下,煤样的渗透率单调减小。③ 温度对煤中气体的流动有显著影响。温度升高,一方面瓦斯气体的动力黏度增加,另一方面煤内固体颗粒体积膨胀,减小了孔隙和裂隙空间,阻碍气体的流动。  相似文献   

15.
刘国军  鲜学福  周军平  赵源  殷宏  郭耀文  谢爽 《煤炭学报》2017,42(10):2670-2678
根据近几年兴起的无水压裂学术思想,采用超临界CO_2压裂后的裂隙页岩体试件(Φ100 mm×200 mm圆柱体试件),开展了不同体积应力和不同温度条件下CO_2渗流实验来模拟压裂后页岩气储层的渗透特性变化,揭示不同因素对裂隙页岩体渗透率的影响机理。实验结果表明:页岩吸附CO_2后渗透率降低;裂隙页岩体渗透率随有效应力的增加呈负指数关系减少;在CO_2超临界温度32~48℃的内页岩渗透率随温度升高而降低,而且渗透率对温度的敏感性也随着温度的升高越来越小;在低压阶段(1~3 MPa),Klinkenberg效应作用明显,在该阶段渗透率随着气体压力的增加而减少,当气体压力在3~5 MPa时,渗透率随气体压力的增加而增加;页岩储层对CO_2的渗透率受地温、地压以及其自身孔隙结构共同影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号