首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自校正多传感器观测融合Kalman估值器及其收敛性分析   总被引:1,自引:1,他引:1  
对于带未知噪声方差的多传感器系统,应用加权最小二乘(WLS)法得到了一个加权融合观测方程,且它与状态方程构成一个等价的观测融合系统.应用现代时间序列分析方法,基于观测融合系统的滑动平均(MA)新息模型参数的在线辨识,可在线估计未知噪声方差,进而提出了一种加权观测融合自校正Kalman估值器,可统一处理自校正融合滤波、预报和平滑问题,并用动态误差系统分析方法证明了它的收敛性,即若MA新息模型参数估计是一致的,则它按实现或按概率1收敛到全局最优加权观测融合Kalman估值器,因而具有渐近全局最优性.一个带3传感器跟踪系统的仿真例子说明了其有效性.  相似文献   

2.
对于带未知噪声方差的多传感器系统,用相关方法给出了噪声方差的在线估值器,进而基于Riccati方程和按分量标量加权最优融合规则,提出了自校正分量解耦信息融合Kalman滤波器.用动态误差系统分析方法证明了自校正融合Kalman滤波器按实现收敛于最优融合Kalman滤波器,因而具有渐近最优性.一个3传感器跟踪系统的仿真例子说明了其有效性.  相似文献   

3.
For multisensor systems with unknown parameters and noise variances, three self-tuning measurement fusion Kalman predictors based on the information matrix equation are presented by substituting the online estimators of unknown parameters and noise variances into the optimal measurement fusion steady-state Kalman predictors. By the dynamic variance error system analysis method, the convergence of the self-tuning information matrix equation is proved. Further, it is proved by the dynamic error system analysis method that the proposed self-tuning measurement fusion Kalman predictors converge to the optimal measurement fusion steady-state Kalman predictors in a realisation, so they have asymptotical global optimality. Compared with the centralised measurement fusion Kalman predictors based on the Riccati equation, they can significantly reduce the computational burden. A simulation example applied to signal processing shows their effectiveness.  相似文献   

4.
5.
相关观测融合Kalman估值器及其全局最优性   总被引:1,自引:0,他引:1  
对于带相关观测噪声和带不同观测阵的多传感器线性离散时变随机控制系统, 用加权最小二乘法(WLS)提出了两种加权观测融合Kalman估值器, 它们包括状态滤波、状态预报和状态平滑. 基于信息滤波器形式下的Kalman滤波器, 证明了在相同初值下, 它们在数值上恒等于相应的集中式观测融合Kalman估值器, 因而具有全局最优性. 但是它们可明显减轻计算负担. 数值仿真例子验证了它们在功能上等价于集中式观测融合Kalman估值器.  相似文献   

6.
加权观测融合非线性无迹卡尔曼滤波算法   总被引:2,自引:0,他引:2  
针对非线性系统的无迹卡尔曼滤波器(UKF),应用加权最小二乘(WLS)法,提出了加权观测融合UKF滤波算法.证明了加权观测融合UKF滤波算法与集中式观测融合UKF滤波算法在数值上的完全等价性,因而具有全局最优性.一个带两传感器非线性系统的仿真例子说明了两种融合算法的有效性及等价性.  相似文献   

7.
对带不确定参数和噪声方差的多传感器定常系统,引入虚拟白噪声补偿不确定参数,可将其转化为带已知参数和不确定噪声方差系统.应用极大极小鲁棒估值原理和加权最小二乘法,基于带噪声方差保守上界的最坏情形保守系统,提出了鲁棒加权观测融合Kalman滤波器,并证明了它与集中式融合鲁棒Kalman滤波器是等价的,且融合器的鲁棒精度高于每个局部滤波器鲁棒精度.一个Monte-Carlo仿真例子说明了如何寻求不确定参数的鲁棒域和如何搜索保守性较小的虚拟噪声方差上界.  相似文献   

8.
Shu-Li Sun 《Automatica》2004,40(8):1447-1453
A unified multi-sensor optimal information fusion criterion weighted by scalars is presented in the linear minimum variance sense. The criterion considers the correlation among local estimation errors, only requires the computation of scalar weights, and avoids the computation of matrix weights so that the computational burden can obviously be reduced. Based on this fusion criterion and Kalman predictor, an optimal information fusion filter for the input white noise, which can be applied to seismic data processing in oil exploration, is given for discrete time-varying linear stochastic control systems measured by multiple sensors with correlated noises. It has a two-layer fusion structure. The first fusion layer has a netted parallel structure to determine the first-step prediction error cross-covariance for the state and the filtering error cross-covariance for the input white noise between any two sensors at each time step. The second fusion layer is the fusion center to determine the optimal scalar weights and obtain the optimal fusion filter for the input white noise. Two simulation examples for Bernoulli-Gaussian white noise filter show the effectiveness.  相似文献   

9.
对于带未知有色观测噪声的多传感器线性离散定常随机系统, 未知模型参数和噪声方差的一致的融合估值器用递推增广最小二乘法(RELS)和求解相关函数方程得到. 将这些估值器代入到最优解耦融合Kalman滤波器中, 得出了自校正解耦融合Kalman滤波器, 并用动态方差误差系统分析(DVESA)和动态误差分析(DESA)方法证明了它收敛于最优解耦融合Kalman滤波器, 因而具有渐近最优性. 一个带3传感器跟踪系统的仿真例子说明了其有效 性.  相似文献   

10.
为了克服按矩阵加权信息融合非稳态Kalman滤波器的在线计算负担大的缺点,和按标量加权融合Kalman滤波器精度较低的缺点,应用现代时间序列分析方法,提出了按对角阵加权的线性最小方差多传感器信息融合稳态Kalman滤波器.它等价于状态分量按标量加权信息融合Kalman滤波器,实现了解耦信息融合Kalman滤波器.它的精度和计算负担介于按矩阵和按标量加权融合器两者之间,且便于实时应用.为了计算最优加权,提出了计算稳态滤波误差方差阵和协方差阵的Lyapunov方程.一个三传感器的雷达跟踪系统的仿真例子说明了其有效性.  相似文献   

11.
Multi-sensor optimal information fusion Kalman filter   总被引:3,自引:0,他引:3  
This paper presents a new multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense, it is equivalent to the maximum likelihood fusion criterion under the assumption of normal distribution. Based on this optimal fusion criterion, a general multi-sensor optimal information fusion decentralized Kalman filter with a two-layer fusion structure is given for discrete time linear stochastic control systems with multiple sensors and correlated noises. The first fusion layer has a netted parallel structure to determine the cross covariance between every pair of faultless sensors at each time step. The second fusion layer is the fusion center that determines the optimal fusion matrix weights and obtains the optimal fusion filter. Comparing it with the centralized filter, the result shows that the computational burden is reduced, and the precision of the fusion filter is lower than that of the centralized filter when all sensors are faultless, but the fusion filter has fault tolerance and robustness properties when some sensors are faulty. Further, the precision of the fusion filter is higher than that of each local filter. Applying it to a radar tracking system with three sensors demonstrates its effectiveness.  相似文献   

12.
In this paper, the problem of designing weighted fusion robust time-varying Kalman predictors is considered for multisensor time-varying systems with uncertainties of noise variances. Using the minimax robust estimation principle and the unbiased linear minimum variance (ULMV) rule, based on the worst-case conservative system with the conservative upper bounds of noise variances, the local and five weighted fused robust time-varying Kalman predictors are designed, which include a robust weighted measurement fuser, three robust weighted state fusers, and a robust covariance intersection (CI) fuser. Their actual prediction error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties of noise variances. Their robustness is proved based on the proposed Lyapunov equation approach. The concept of the robust accuracy is presented, and the robust accuracy relations are proved. The corresponding steady-state robust local and fused Kalman predictors are also presented, and the convergence in a realization between the time-varying and steady-state robust Kalman predictors is proved by the dynamic error system analysis (DESA) method and the dynamic variance error system analysis (DVESA) method. Simulation results show the effectiveness and correctness of the proposed results.  相似文献   

13.
For the multisensor systems with unknown noise variances, using the modern time series analysis method, based on on-line identification of the moving average (MA) innovation models, and based on the solution of the matrix equations for correlation function, the on-line estimators of the noise variances are obtained, and under linear minimum variance optimal information fusion criterion weighted by scalars for state components, a class of self-tuning decoupled fusion Wiener filters is presented. It realizes the self-tuning decoupled local Wiener filters and self-tuning decoupled fused Wiener filters for the state components. A new concept of convergence in a realization is presented, which is weaker than the convergence with probability one. The dynamic error system analysis (DESA) method is presented, by which the problem of convergence in a realization for self-tuning fusers is transformed into the stability problems of non-homogeneous difference equations, and the decision criterions of the stability are also presented. It is strictly proved that if the parameter estimation of the MA innovation models is consistent and if the measurement process is bounded in a realization or with probability one, then the self-tuning fusers will converge to the optimal fusers in a realization or with probability one, so that they have the asymptotic optimality. They can deal with the systems with the non-stationary or Gaussian measurement processes. They can reduce the computational burden, and are suitable for real time applications. A simulation example for a target tracking system with 3-sensor shows their effectiveness.  相似文献   

14.
本文研究带不确定方差乘性和加性噪声和带状态相依及噪声相依乘性噪声的多传感器系统鲁棒加权融合估计问题.通过引入虚拟噪声补偿乘性噪声的不确定性,将原系统化为带确定参数和不确定加性噪声方差的系统,进而利用Lyapunov方程方法提出在统一框架下的按对角阵加权融合极大极小鲁棒稳态Kalman估值器(预报器、滤波器和平滑器),其中基于预报器设计滤波器和平滑器,并给出每个融合器的实际估值误差方差的最小上界.证明了融合器的鲁棒精度高于每个局部估值器的鲁棒精度.应用于不间断电源(uninterruptible power system,UPS)系统鲁棒融合滤波的仿真例子说明了所提结果的正确性和有效性.  相似文献   

15.
当容积卡尔曼滤波的系统模型不准确或测量出现异常时容易出现滤波发散。为了解决这一问题,提出了一种自适应容积卡尔曼滤波算法,构造了一组噪声统计估计器对噪声的统计特征进行在线实时估计,并在测量异常时采用修正函数对滤波过程进行修正,有效提高了滤波估计的精度和对滤波发散的抑制能力;在集中式滤波结构和联邦式滤波结构的基础上,设计了一种基于自适应容积卡尔曼滤波算法的多传感器系统混合式组合滤波结构,并给出了融合各传感器的局部滤波信息以得到全局滤波估计的计算方法。以对车辆的定位导航为应用背景进行了仿真实验,仿真结果证明了所提方法的有效性。  相似文献   

16.
对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于滑动平均(MA)新息模型的在线辨识和求解相关函数矩阵方程组,得到了噪声统计的在线估值器,进而在按矩阵加权线性最小方差最优信息融合准则下,提出了自校正信息融合Kalman平滑器,提出了一种按实现收敛性新概念,证明了自校正Kalman融合器按实现收敛于最优Kalman融合器,因而它具有渐近最优性.同单传感器自校正Kalman平滑器相比,它可提高平滑精度,一个目标跟踪系统的仿真例子说明了其有效性.  相似文献   

17.
针对互协方差信息未知的多传感器系统,本文提出了一种快速对角阵权系数协方差交叉融合算法(FDCI).本文首先提出了一种对角阵权系数协方差交叉融合(DCI)方案,并证明了所提出DCI算法在融合估计精度上高于经典批处理CI融合(BCI)算法.在此基础之上,针对非线性等复杂的互协方差未知的多传感器系统,提出FDCI算法,并证明了所提出FDCI算法的无偏性及鲁棒精度. FDCI融合算法虽然在融合估计精度上低于DCI,但FDCI无需进行多权系数的非线性代价函数的优化问题,进而大大降低了计算负担,提高了系统的实时性.最后,结合容积卡尔曼滤波算法(CKF)提出了快速对角阵权系数协方差交叉融合容积卡尔曼滤波算法.仿真实例验证了所提出算法的正确性和有效性.  相似文献   

18.
多传感器标量加权最优信息融合稳态Ka lman 滤波器   总被引:12,自引:1,他引:12  
提出一种新的标量加权多传感器线性最小方差意义下的最优信息融合准则.该准则考虑了局部估计误差之间的相关性,只需计算加权标量系数,避免了加权矩阵的计算,明显减小了计算量,便于实时应用.运用稳态Kalman滤波理论,基于该融合准则,给出了多传感器最优信息融合稳态Kalman滤波器.在所有局部滤波器达到稳态时,只需一次融合便可获得信息融合稳态滤波器,算法简单.仿真例子验证了其有效性.  相似文献   

19.
ABSTRACT

For multisensor systems with uncertain noise variances and missing measurements, it can be converted into one only with uncertain noise variances by introducing fictitious measurement white noises. According to the minimax robust estimation principle and parameterisation representation of perturbances of uncertain noise variances, based on the worst-case system with conservative upper bounds of uncertain noise variances, the two classes of guaranteed cost robust weighted fusion Kalman estimators with matrix weights, diagonal matrix weights, scalar weights, and covariance intersection fusion matrix weights are presented. One class is the construction of a maximal perturbance region of uncertain noise variances, in which for all admissible perturbances, the accuracy deviations are guaranteed to remain within the prescribed range. The other class is the finding of minimal upper bound and maximal lower bound of accuracy deviations over the given perturbance region of uncertain noise variances. Two problems can be converted into the optimisation problems with constraints. Their optimal analytical solutions can simply be found respectively by the Lagrange multiplier method and the linear programme method. The guaranteed cost robustness is proved by the Lyapunov equation approach. A simulation example applied to the mass-spring system is provided to demonstrate the correctness and effectiveness of the proposed results.  相似文献   

20.
快速信息融合Kalman滤波器   总被引:5,自引:0,他引:5  
应用现代时间序列分析方法,在标量加权线性最小方差融合准则下,提出一种多传感器快速信息融合稳态Kalman滤波器.基于ARMA新息模型计算稳态Kalman滤波器增益,提出了计算传感器之间的滤波误差方差阵和协方差阵的Lyapunov方程,它可用迭代法求解,并证明了迭代解的指数收敛性.与基于Riccati方程按矩阵加权的信息融合Kalman滤波器相比,可明显减小计算负担,便于实时应用,可用于设计含未知噪声统计系统的信息融合自校正Kalman滤波器.最后以目标跟踪系统的一个仿真例子说明了其有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号