首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
提出一种人脸图像超分辨率重建(Super-Resolution Reconstruction,SRR)的自适应学习样本选择方法。利用局部保持投影(Locality Preserving Projections,LPP)算法的局部保持能力,在人脸图像局部流形上分析其非线性结构特征,并给出了LPP变换向量的数值解法。在LPP的特征空间中动态搜索学习样本,即选择出与输入图像块最为相似的像素块集合。利用选择出的样本通过基于像素块的特征变换法完成超分辨率重建。实验表明,自适应样本选择方法可以快速、有效地选择出少量学习样本,具有良好的图像高频信息复原能力。  相似文献   

2.
通常,人脸图像能够看作是嵌入到高维空间中的低维流形的点的集合。流形学习被用于很多降维方法中,局部保持投影(LPP)便是其中的一种。针对局部保持投影方法进行了研究,将局部保持投影算法融入到超分辨率方法中,并将其结合到人脸图像的复原上。介绍现有的基于LPP的人脸图像的超分辨率算法。  相似文献   

3.
人脸图像超分辨率非线性学习算法   总被引:1,自引:2,他引:1       下载免费PDF全文
针对一般学习算法效率低下的问题,提出一种马尔可夫网络模型下的非线性学习算法。对输入的低分辨率图像以及训练用高分辨率图像和对应的低分辨率图像进行分块,并使图像基本对齐,构造训练图像集,利用训练集人脸图像的差异,采用块坐标限位操作技术,给出一种非线性样本搜索算法,降低搜索空间复杂度,提高了匹配效率和相关性。利用搜索到的高分辨率图像分块样本,直接输出超分辨率图像。分析和实验证实,与传统学习算法相比,该方法具有输出质量好、效率高的特点。  相似文献   

4.
基于识别的凸集投影人脸图像超分辨率重建   总被引:3,自引:0,他引:3  
人脸图像的超分辨率重建在公安、视频监控等领域有重要应用价值.基于识别的思想,对人脸灰度图像进行统计分析,得到有关人脸灰度整体特征的先验知识,将其描述为属性集合,从而利用凸集投影算法进行超分辨率图像重建.实验结果表明,重建质量较为理想,与通常的超分辨率凸集投影重建方法相比,抑制噪声的能力有显著提高,重建质量改善明显,收敛速度加快,且易于计算和实现.  相似文献   

5.
提出一种针对正面人脸图像的超分辨率重建方法,通过学习人脸图像梯度的空间分布特性,获取梯度先验知识;通过结合贝叶斯最大后验概率估计理论,采用最速下降优化方法得到高分辨率人脸图像。实验结果表明,该方法在仅输入2—3幅低分辨率图像的情况下即可重建出具有较佳高频细节的超分辨率图像。  相似文献   

6.
黄华  樊鑫  齐春  朱世华 《软件学报》2006,17(12):2529-2536
将人脸图像超分辨率重建描述为人脸混合模型的纹理和位置参数的贝叶斯概率估计问题,将超分辨率重建的图像配准和像素融合这两个过程置于统一的概率估计框架下,并利用基于粒子滤波的参数估计算法,同时估计纹理和位置参数,从而实现人脸图像的超分辨率重建.包含灰度和位置两种先验信息的人脸混合模型,同时用于超分辨率重建的两个过程中,提高了图像配准精度和重建算法的性能,避免了通常方法在获得准确鲁棒的运动场估计时需要清晰的高分辨图像,而获得清晰的高分辨图像时又需要准确鲁棒运动场估计的困境.正面人脸合成序列图像实验结果表明,该方法获得的重建结果较为理想.  相似文献   

7.
研究单幅人脸图像的超分辨率重构算法。采用马尔可夫网络模型描述重构机制,对输入的低分辨率图像,以及训练用高分辨率图像和对应的低分辨率图像进行分块,并使图像基本对齐,构造训练图像集。针对简化马尔可夫网络计算的需要以及训练集人脸图像的差异,在块坐标限位操作的基础上,提出了一种非线性样本搜索算法,降低了搜索空间复杂度,提高了匹配效率和相关性。算法利用搜索到的高分辨率图像分块样本,直接输出超分辨率图像。分析和实验证实,与传统学习算法相比,该文方法具有输出质量好、效率高的特点。  相似文献   

8.
基于深度学习的图像超分辨率重构方法对低分辨率人脸图像进行超分辨率重构时,通常存在重构图像模糊和重构图像与真实图像差异较大等问题.基于此问题,文中提出融合参考图像的人脸超分辨率重构方法,可以实现对低分辨率人脸图像的有效重构.参考图像特征提取子网提取参考图像的多尺度特征,保留人脸神态和重点部位的细节特征信息,去除人脸轮廓和面部表情等冗余信息.基于提取的参考图像多尺度特征,逐级超分主网络对低分辨率人脸图像特征进行逐次填充,最终重构生成高分辨率的人脸图像.在数据集上的实验表明,文中方法可以实现对低分辨率人脸图像的有效重构,具有良好的鲁棒性.  相似文献   

9.
提出一个单幅人脸图像的超分辨率重构算法。该算法建立在马尔可夫网络模型的基础上,引入了语义相似度的学习,将学习的范围限定在位置相关的特征语义区域,提升了学习算法的效率以及重构图像时的逼真性;重构算法中引入了权值融合机制,提升了输出图像的高频成分,有效地改善了图像的全局效果。分析和实验表明,该算法能在大容量训练集中,快速学习到有价值的图像信息,并且在图像的复原的过程中有效地抑制了图像失真现象,极大地改善了超分辨率图像的质量。  相似文献   

10.
为提高局部保持投影(LPP)在人脸图像超分辨率中的适用性,在LPP中引入典型相关分析(CCA),提出一种相关性增强的局部保持投影方法(CELPP)。CELPP用于提取高分辨率图像与低分辨率图像特征,根据关系学习建立低分辨率图像特征与高分辨率图像特征之间的映射变换,输入低分辨率图像,通过CELPP特征提取和关系映射,得到高分辨率图像,并将其用于人脸识别。对人脸库ORL和Yale进行的实验结果表明,该方法同时考虑了高分辨率图像与低分辨率图像的相似性及同类图像的局部结构性,在基于人脸识别的超分辨率应用中优于LPP和CCA。  相似文献   

11.
提出一种基于图像矩阵判别局部保持投影的人脸识别方法。图像矩阵判别局部保持投影是在局部保持投影基础上进行了扩展,考虑了类标签信息并在其目标函数中增加类间散度约束,使得求解的特征更具判别性。另外,图像矩阵判别局部保持投影是直接处理图像矩阵而不需要将矩阵转化为向量,保留了像素间的空间位置关系,避免了奇异性问题。实验结果表明该方法是有效的。  相似文献   

12.
特征提取是人脸识别的一个重要研究领域,能否有效地提取判别特征是决定人脸识别算法好坏的关键。一般的人脸识别算法都是基于图像向量的,需要将2维人脸图像压缩成1维向量,这不仅破坏了像素之间原有的空间结构关系,而且转换后的向量维数过高。为了避免这种情况,提出了一种直接基于图像矩阵的人脸识别算法——2维保局投影算法。由于该算法是在保局投影的基础上进行扩展,使其可以直接面向2维图像矩阵进行处理,同时在构建相似矩阵的时候引入了样本类别信息,因而可有效地提取人脸图片的2维判别特征。另外还采用最小近邻分类器估算识别率。在AT&T人脸库的实验结果表明,与Eigenface、Fisherface以及Laplacianface算法相比,该方法具有较好的识别率。  相似文献   

13.
一种基于Schur分解的正交鉴别局部保持投影方法   总被引:2,自引:0,他引:2       下载免费PDF全文
人脸识别是模式识别领域中的一项重要的研究课题。到目前为止,已经提出了许多方法来处理人脸的识别问题。最近,许多流形学习算法被提出并且成功地应用于人脸识别当中。这些流形学习方法能够保持人脸图像数据的局部结构,同时,还可以发现人脸的非线性结构。在这些流形学习方法中,局部保持投影方法(LPP)是最有效的方法之一。基于LPP方法,提出了一种新的人脸识别方法——基于Schur分解的正交鉴别局部保持投影方法(ODLPPS)。与LPP方法相比,ODLPPS 把类间散度与类内散度之差的信息融入到LPP的目标函数中并且获得了正交的基向量。在ORL和Yale 人脸数据库上的实验结果表明,该方法在识别性能上优于一些已经存在的方法,如eigenface,Fisherface,LPP 和orthogonal LPP(OLPP)。  相似文献   

14.
本文研究基于Gabor小波变换和流形学习的人脸识别方法,首先引入Gabor小波对人脸图像提取不同方向、不同尺度的多个Gabor幅值特征(Gabor magnitude feature),然后使用能够提取子流形的NPE算法对GMF特征进行维数约简,最后使用线性判别分析进一步提取鉴别性特征。此算法利用了Gabor特征对人脸图像的优异表征能力、流形方法和传统的判别方法。在标准人脸库上的实验结果表明,与其他降维方法相比,新算法能够获得较好的识别效果。  相似文献   

15.
稀疏保留投影是一种有效的特征提取方法,但是其主要关注样本间的全局稀疏重构关系,并且得到的投影变换通常不是正交的。在实际应用中,图像数据往往处于高维空间中的一种低维流形中,正交性一直被认为有利于提高鉴别能力。文中以有监督学习的方式在稀疏保留投影中引入了流形结构保留,并使得投影空间正交,从而提出了一种新的特征提取方法,即基于流形学习的整体正交稀疏保留鉴别分析(MLHOSDA)。在人脸和掌纹图像数据库的实验结果表明此方法具有较好的识别效果。  相似文献   

16.
针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维。理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维数据中的有效信息,降低计算复杂程度,提高算法的运行效率,同时还能够克服存在外点情况下分类准确率较低问题,提高算法的鲁棒性。通过选择不同的人脸数据库进行实验,实验结果表明,在存在外点的情况下,运用最近邻分类器时能够取得更高的分类准确率,同时所需的分类时间有所减少。  相似文献   

17.
研究表明基于整体思想的人脸识别方法由于忽略图像的局部信息,在识别性能方面不如局部信息特征保持较好的基于子模块思想的识别算法。基于应用流形技术对图像降维后能够较好保持非线性子流形中的局部数据流形结构,提出了一种改进的子模式局部保持映射人脸识别算法。其主要思想是将同类的不同图像一并划分子集,由同位置子图组成子模块,并对子模块运用LPP算法学习其流形结构,与将不同类图像一并划分子集学习流形的方法不同。实验表明,该算法能更好地保持人脸图像的局部流形结构和信息特征,提高了识别率。  相似文献   

18.
视频场景复杂多变, 视频采集设备不一致等原因, 导致无约束视频中充斥着大量的遮挡和人脸旋转, 视频人脸识别方法的准确率不高且性能不稳定.为解决上述问题, 本文提出了一种基于QPSO优化的流形学习的视频人脸识别算法.该算法将视频人脸识别视为图像集相似度度量问题, 首先帧图像对齐后提取纹理特征并进行融合, 再利用带有QPSO优化的黎曼流形大幅度简约维度以获得视频人脸的内在表示, 相似度则由凸包距离表示, 最后利用SVM分类器获得分类结果.通过在Youtube Face数据库和Honda/UCSD数据库上与当前主流算法进行的对比实验, 验证了本文算法的有效性, 所提算法识别精度较高, 误差较低, 并且对光照和表情变化具有较强的鲁棒性.  相似文献   

19.
稀疏保留投影通过保留样本之间的全局稀疏重构关系来进行特征提取,获得了良好的分类效果。但是,稀疏保留投影得到的投影变换通常不是正交的,而且在实际应用中,正交性一直被认为有利于提高鉴别能力。另外,根据流形学习理论,局部流形结构比全局欧式结构更重要。因此,文中在稀疏保留投影中引入了流形结构保留和正交投影,提出了整体正交流形稀疏保留投影(HOMSPP)和迭代正交流形稀疏保留投影(IOMSPP)两种实现算法来实现人脸和掌纹图像的特征提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号