首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
Sustainable management of contaminated sediments requires careful prioritization of available resources and focuses on efforts to optimize decisions that consider environmental, economic, and societal aspects simultaneously. This may be achieved by combining different analytical approaches such as risk analysis (RA), life cycle analysis (LCA), multicriteria decision analysis (MCDA), and economic valuation methods. We propose the use of stochastic MCDA based on outranking algorithms to implement integrative sustainability strategies for sediment management. In this paper we use the method to select the best sediment management alternatives for the dibenzo-p-dioxin and -furan (PCDD/F) contaminated Grenland fjord in Norway. In the analysis, the benefits of health risk reductions and socio-economic benefits from removing seafood health advisories are evaluated against the detriments of remedial costs and life cycle environmental impacts. A value-plural based weighing of criteria is compared to criteria weights mimicking traditional cost-effectiveness (CEA) and cost-benefit (CBA) analyses. Capping highly contaminated areas in the inner or outer fjord is identified as the most preferable remediation alternative under all criteria schemes and the results are confirmed by a probabilistic sensitivity analysis. The proposed methodology can serve as a flexible framework for future decision support and can be a step toward more sustainable decision making for contaminated sediment management. It may be applicable to the broader field of ecosystem restoration for trade-off analysis between ecosystem services and restoration costs.  相似文献   

2.
Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at approximately 30-60 cm below the sediment-water interface, ca. 1960-1980. Maximum t-PCB concentrations were followed by progressively decreasing concentrations with depth until the t-PCB concentrations approached the detection limit, where sediments were likely deposited before the onset of PCB use at the Sangamo-Weston plant. The sediments containing the maximum PCB concentrations are associated with the period of maximum PCB release into the watershed. Sedimentation rates averaged 2.1 +/- 1.5 g/(cm2 yr) for 12 of 18 cores collected. The 1994 Record of Decision cleanup requirement is 1.0 mg/kg; two more goals (0.4 and 0.05 mg/kg t-PCBs) also were identified. Average surface sedimentation requirements to meet the three goals were 1.4 +/- 3.7, 11 +/- 4.2, and 33 +/- 11 cm, respectively. Using the age dating results, the average recovery dates to meet these goals were 2000.6 +/- 2.7, 2007.4 +/- 3.5, and 2022.7 +/- 11 yr, respectively. (The 95% prediction limits for these values also are provided.) Despite the reduction in surface sediment PCB concentrations, PCB concentrations measured in largemouth bass and hybrid bass filets continue to exceed the 2.0 mg/kg FDA fish tolerance level.  相似文献   

3.
Life-cycle assessment (LCA) is the method of inventorying, assessing, and interpreting environmental interventions caused by products and product systems through their life cycle. The ecotoxicity of metals has proven a challenge for LCA given metal characteristics such as reversibility of removal processes, speciation, and the effect on bioavailability and ecotoxic effect assessment. Our review focuses on the first part of the ecotoxic impact chain for metals, i.e., the release of metals from solid deposits. According to the principle of temporal justice, sustainability assessment tools such as LCA should accountfor emissions regardless of temporal location distribution. This is in LCA commonly interpreted as leaching until depletion of metals bound in solid wastes under the presumption that infinite time implies infinite weathering. This approach is risk conservative for metals and it hampers the use of LCA to assess remediation projects for soils and sediments contaminated by inorganic substances. We discuss metal significance and inventory issues in LCA, and review existing and proposed approachesto make LCA applicable to metal long-term emission.  相似文献   

4.
In situ capping has recently emerged as a remedial method for contaminated sediments and involves placing a layer of clean material at the sediment-water interface. The biogeochemical response of native sediment following capping, as well as the redoxenvironmentsthatdevelopwithinthe cap, are currently unknown. Column experiments were performed using voltammetric microelectrodes to characterize spatial and temporal distributions of biogeochemical processes in capped sediments under stagnant and upflow conditions. Oxygen penetration into sand caps extended only a few centimeters, thus maintaining underlying sediment anaerobic. Chemical species indicative of heterotrophic organic matter degradation (Mn2+, Fe2+, organic--FeIII(aq), FexSy(aq), sigmaH2S) were observed in stratified zones below the oxic layer. The majority of the overlying cap was subject to iron-reducing conditions under stagnant flow, while upflow conditions led to a compression of the redox zones toward the cap-water interface. Controls confirmed that sediment capping induced an upward, vertical shift of biogeochemical processes into the overlying cap, with redox stratification conserved. The redox conditions within the cap, specifically the predominance of iron reduction, should allow for reductive contaminant attenuation processes to extend into the overlying cap. These findings improve our understanding of the dynamics of biogeochemical processes following capping of contaminated sediments.  相似文献   

5.
Multimedia environmental fate models are useful tools to investigate the long-term impacts of remediation measures designed to alleviate potential ecological and human health concerns in contaminated areas. Estimating and communicating the uncertainties associated with the model simulations is a critical task for demonstrating the transparency and reliability of the results. The Extended Fourier Amplitude Sensitivity Test(Extended FAST) method for sensitivity analysis and Bayesian Markov chain Monte Carlo (MCMC) method for uncertainty analysis and model calibration have several advantages over methods typically applied for multimedia environmental fate models. Most importantly, the simulation results and their uncertainties can be anchored to the available observations and their uncertainties. We apply these techniques for simulating the historical fate of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the Grenland fjords, Norway, and for predicting the effects of different contaminated sediment remediation (capping) scenarios on the future levels of PCDD/Fs in cod and crab therein. The remediation scenario simulations show that a significant remediation effect can first be seen when significant portions of the contaminated sediment areas are cleaned up, and that increase in capping area leads to both earlier achievement of good fjord status and narrower uncertainty in the predicted timing for this.  相似文献   

6.
Contamination in deep vadose zone environments is isolated from exposure so direct contact is not a factor in its risk to human health and the environment. Instead, movement of contamination to the groundwater creates the potential for exposure and risk to receptors. Limiting flux from contaminated vadose zone is key for protection of groundwater resources, thus the deep vadose zone is not necessarily considered a resource requiring restoration. Contaminant discharge to the groundwater must be maintained low enough by natural attenuation (e.g., adsorption processes or radioactive decay) or through remedial actions (e.g., contaminant mass reduction or mobility reduction) to meet the groundwater concentration goals. This paper reviews the major processes for deep vadose zone metal and radionuclide remediation that form the practical constraints on remedial actions. Remediation of metal and radionuclide contamination in the deep vadose zone is complicated by heterogeneous contaminant distribution and the saturation-dependent preferential flow in heterogeneous sediments. Thus, efforts to remove contaminants have generally been unsuccessful although partial removal may reduce downward flux. Contaminant mobility may be reduced through abiotic and biotic reactions or through physical encapsulation. Hydraulic controls may limit aqueous transport. Delivering amendments to the contaminated zone and verifying performance are challenges for remediation.  相似文献   

7.
Typical sand caps used for sediment remediation have little sorption capacity to retard the migration of hydrophobic contaminants such as PAHs that can be mobilized by significant groundwater flow. Laboratory column experiments were performed using contaminated sediments and capping materials from a creosote contaminated USEPA Superfund site. Azoic laboratory column experiments demonstrated rapid breakthrough of lower molecular weight PAHs when groundwater seepage was simulated through a column packed with coarse sand capping material. After eight pore volumes of flow, most PAHs measured showed at least 50% of initial source pore water concentrations at the surface of 65 cm capping material. PAH concentration in the cap solids was low and comparable to background levels typically seen in urban depositional sediment, but the pore water concentrations were high. Column experiments with a peat amendment delayed PAH breakthrough. The most dramatic result was observed for caps amended with activated carbon at a dose of 2% by dry weight. PAH concentrations in the pore water of the activated carbon amended caps were 3-4 orders of magnitude lower (0.04 ± 0.02 μg/L for pyrene) than concentrations in the pore water of the source sediments (26.2 ± 5.6 μg/L for pyrene) even after several hundred pore volumes of flow. Enhancing the sorption capacity of caps with activated carbon amendment even at a lower dose of 0.2% demonstrated a significant impact on contaminant retardation suggesting consideration of active capping for field sites prone to groundwater upwelling or where thin caps are desired to minimize change in bathymetry and impacts to aquatic habitats.  相似文献   

8.
Natural attenuation processes during in situ capping   总被引:1,自引:0,他引:1  
Chlorinated solvents are common groundwater contaminants that threaten surface water quality and benthic health when present in groundwater seeps. Aquatic sediments can act as natural biobarriers to detoxify chlorinated solvent plumes via reductive dechlorination. In situ sediment capping, a remedial technique in which clean material is placed at the sediment-water interface, may alter sedimentary natural attenuation processes. This research explores the potential of Anacostia River sediment to naturally attenuate chlorinated solvents under simulated capping conditions. Results of microcosm studies demonstrated that intrinsic dechlorination of dissolved-phase PCE to ethene was possible, with electron donor availability controlling microbial activity. A diverse microbial community was present in the sediment, including multiple Dehalococcoides strains indicated by the amplification of the reductive dehalogenases tceA, vcrA, and bvcA. An upflow column simulating a capped sediment bed subject to PCE-contaminated groundwater seepage lost dechlorination activity with time and only achieved complete dechlorination when microorganisms present in the sediment were provided electron donor. Increases in effluent chloroethene concentrations during the period of biostimulation were attributed to biologically enhanced desorption and the formation of less sorptive dechlorination products. These findings suggest that in situ caps should be designed to account for reductions in natural biobarrier reactivity and for the potential breakthrough of groundwater contaminants.  相似文献   

9.
In situ amendment of contaminated sediments using activated carbon (AC) is a recent remediation technique, where the strong sorption of contaminants to added AC reduces their release from sediments and uptake into organisms. The current study describes a marine underwater field pilot study in Trondheim harbor, Norway, in which powdered AC alone or in combination with sand or clay was tested as a thin-layer capping material for polycyclic aromatic hydrocarbon (PAH)-contaminated sediment. Several novel elements were included, such as measuring PAH fluxes, no active mixing of AC into the sediment, and the testing of new manners of placing a thin AC cap on sediment, such as AC+clay and AC+sand combinations. Innovative chemical and biological monitoring methods were deployed to test capping effectiveness. In situ sediment-to-water PAH fluxes were measured using recently developed benthic flux chambers. Compared to the reference field, AC capping reduced fluxes by a factor of 2-10. Pore water PAH concentration profiles were measured in situ using a new passive sampler technique, and yielded a reduction factor of 2-3 compared to the reference field. The benthic macrofauna composition and biodiversity were affected by the AC amendments, AC + clay having a lower impact on the benthic taxa than AC-only or AC + sand. In addition, AC + clay gave the highest AC recoveries (60% vs 30% for AC-only and AC + sand) and strongest reductions in sediment-to-water PAH fluxes and porewater concentrations. Thus, application of an AC-clay mixture is recommended as the optimal choice of the currently tested thin-layer capping methods for PAHs, and more research on optimizing its implementation is needed.  相似文献   

10.
The effectiveness of thin-layer sand capping for contaminated sediment management (capping with a layer of thickness comparable to the depth of benthic interactions) is explored through experiments with laboratory-scale microcosms populated with the deposit-feeding oligochaete, Ilyodilus templetoni. Passive sampling of pore water concentrations in the microcosms using polydimethylsiloxane (PDMS)-coated fibers enabled quantification of high-resolution vertical concentration profiles that were used to infer contaminant migration rates and mechanisms. Observed concentration profiles were consistent with models that combine traditional contaminant transport processes (sorption-retarded diffusion) with bioturbation. Predictions of bioaccumulation based on contaminant pore water concentrations within the surface layer of the cap correlated well with observed bioaccumulation (correlation coefficient of 0.92). The results of this study show that thin-layer sand caps of contaminated sediments can be effective at reducing the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) provided the thickness of the cap layer exceeds the depth of organism interaction with the sediments and the pore water concentrations within the biologically active zone remain low (e.g., when molecular diffusion controls transport from the underlying sediment layer).  相似文献   

11.
The effects of tides, bioturbating organisms, and periods of anoxia on metal fluxes from contaminated harbor sediments in a shallow tidal estuarine bay were studied, together with capping technology options for the containment of metal contaminants. Zinc fluxes from the sediments were high, ranging from 10 to 89 mg of Zn m(-2) day(-1). In the absence of capping, experiments in corer-reactors showed that simulated tidal processes increased zinc fluxes 5-fold. Fluxes were also greater in the presence of sediment-dwelling organisms. If organisms were removed, and recolonizing organisms later added, their bioturbation activities initially lowered zinc fluxes, but fluxes gradually reached steady state at the higher levels seen previously. Capping materials physically isolate contaminated sediments, provide a binding substrate for metals released from the sediment and importantly create an anoxic environment below the cap, which stimulates the formation of insoluble metal sulfides. Clean sediment (5 mm) was the most effective capping material in reducing zinc fluxes. Zeolite/sand mixtures (10 mm) also greatly reduced these fluxes, but significant breakthrough of zinc occurred after 2 weeks. Sand (20 mm) was not effective. The presence of organisms disturbed capping materials and increased zinc fluxes. Installed capping materials should have depths of >30 cm to minimize organisms burrowing to contaminated sediments beneath.  相似文献   

12.
啤酒生产周期长、能耗高,对啤酒开展碳足迹研究十分必要。本文采用生命周期评价(Life Cycle Assessment,LeA)的方法,结合沈阳工厂8°P雪花纯生啤酒碳足迹的计算案例,对国内外啤酒生产从原料、包装物、工厂生产等各个环节的碳足迹、相关碳排放因子及管理进行了综述和比较。旨在为国内啤酒碳足迹计算模型的建立奠定基础,确定节能减“碳”关键控制点,促进国内啤酒厂的可持续发展。  相似文献   

13.
Life cycle assessment for sustainable metropolitan water systems planning   总被引:9,自引:0,他引:9  
Life Cycle Assessment (LCA) is useful as an information tool for the examination of alternative future scenarios for strategic planning. Developing a life cycle assessment for a large water and wastewater system involves making methodological decisions about the level of detail which is retained through different stages of the process. In this article we discuss a methodology tailored to strategic planning needs which retains a high degree of model segmentation in order to enhance modeling of a large, complex system. This is illustrated by a case study of Sydney Water, which is Australia's largest water service provider. A prospective LCA was carried out to examine the potential environmental impacts of Sydney Water's total operations in the year 2021. To our knowledge this is the first study to create an LCA model of an integrated water and wastewater system with this degree of complexity. A "base case" system model was constructed to represent current operating assets as augmented and upgraded to 2021. The base case results provided a basis for the comparison of alternative future scenarios and for conclusions to be drawn regarding potential environmental improvements. The scenarios can be roughly classified in two categories: (1) options which improve the environmental performance across all impact categories and (2) options which improve one indicator and worsen others. Overall environmental improvements are achieved in all categories by the scenarios examining increased demand management, energy efficiency, energy generation, and additional energy recovery from biosolids. The scenarios which examined desalination of seawater and the upgrades of major coastal sewage treatment plants to secondary and tertiary treatment produced an improvement in one environmental indicator but deteriorations in all the other impact categories, indicating the environmental tradeoffs within the system. The desalination scenario produced a significant increase in greenhouse gas emissions due to coal-fired electricity generation for a small increase in water supply. Assessment of a greenfield scenario incorporating water demand management, on-site treatment, local irrigation, and centralized biosolids treatment indicates significant environmental improvements are possible relative to the assessment of a conventional system of corresponding scale.  相似文献   

14.
Remediation of contaminated sediments remains a technological challenge because traditional approaches do not always achieve risk reduction goals for human health and ecosystem protection and can even be destructive for natural resources. Recent work has shown that uptake of persistent organic pollutants such as polychlorinated biphenyls (PCBs) in the food web is strongly influenced by the nature of contaminant binding, especially to black carbon surfaces in sediments. We demonstrate for the first time in a contaminated river that application of activated carbon to sediments in the field reduces biouptake of PCBs in benthic organisms. After treatment with activated carbon applied at a dose similar to the native organic carbon of sediment, bioaccumulation in freshwater oligochaete worms was reduced compared to preamendment conditions by 69 to 99%, and concentrations of PCBs in water at equilibrium with the sediment were reduced by greater than 93% at all treatment sites for up to three years of monitoring. By comparing measured reductions in bioaccumulation of tetra- and penta-chlorinated PCB congeners resulting from field application of activated carbon to a laboratory study where PCBs were preloaded onto activated carbon, it is evident that equilibrium sorption had not been achieved in the field. Although other remedies may be appropriate for some highly contaminated sites, we show through this pilot study that PCB exposure from moderately contaminated river sediments may be managed effectively through activated carbon amendment in sediments.  相似文献   

15.
Emerging environmental threats such as novel chemical compounds, biological agents, and nanomaterials present serious challenges to traditional models of risk analysis and regulatory risk management processes. Even a massive expansion of risk and life-cycle assessment research efforts is unlikely to keep pace with rapid technological change resulting in new and modified materials with changing properties. Therefore, it is essential to have a framework for interpreting available information in the context of high uncertainty and a strategy for prioritizing research efforts to reduce those uncertainties that are most critical. We discuss how integrating the three analytic approaches of risk assessment, life-cycle assessment, and multicriteria decision analysis into a framework permits understanding uncertainty and prioritizes needs for scientific research. Our approach is illustrated with two separate cases: nanomaterials and contaminated sediment remediation.  相似文献   

16.
Contaminated sediment management is an urgent environmental and regulatory issue worldwide. Because remediation is expensive, sound quantitative assessments of uncertainty aboutthe spatial distribution of contaminants are critical, butthey are hampered bythe physical complexity of sediment environments. This paper describes the use of geostatistical modeling approaches to quantify uncertainty of 2,3,7,8-tetrachlorodibenzo-p-dioxin concentrations in Passaic River (New Jersey) sediments and to incorporate this information in decision-making processes, such as delineation of contaminated areas and additional sampling needs. First, coordinate transformation and analysis of three-dimensional semivariograms were used to describe and modelthe directional variability accounting forthe meandering course of the river. Then, indicator kriging was employed to provide models of local uncertainty at unsampled locations without requiring a prior transform (e.g. log-normal) of concentrations. Cross-validation results show that the use of probability thresholds leads to more efficient delineation of contaminated areas than a classification based on the exceedence of regulatory thresholds by concentration estimates. Depending on whether additional sampling aims at reducing prediction errors or misclassification rates, the variance of local probability distributions or a measure of the expected closeness to the regulatory threshold can be used to locate candidate locations.  相似文献   

17.
The environmental impacts of remediation of a chloroethene-contaminated site were evaluated using life cycle assessment (LCA). The compared remediation options are (i) in situ bioremediation by enhanced reductive dechlorination (ERD), (ii) in situ thermal desorption (ISTD), and (iii) excavation of the contaminated soil followed by off-site treatment and disposal. The results showed that choosing the ERD option will reduce the life-cycle impacts of remediation remarkably compared to choosing either ISTD or excavation, which are more energy-demanding. In addition to the secondary impacts of remediation, this study includes assessment of local toxic impacts (the primary impact) related to the on-site contaminant leaching to groundwater and subsequent human exposure via drinking water. The primary human toxic impacts were high for ERD due to the formation and leaching of chlorinated degradation products, especially vinyl chloride during remediation. However, the secondary human toxic impacts of ISTD and excavation are likely to be even higher, particularly due to upstream impacts from steel production. The newly launched model, USEtox, was applied for characterization of primary and secondary toxic impacts and combined with a site-dependent fate model of the leaching of chlorinated ethenes from the fractured clay till site.  相似文献   

18.
To provide a new perspective on the fate of petroleum in the marine environment, we utilized variations in the natural abundance of radiocarbon (14C) to detect and quantify petroleum residues that have persisted in Wild Harbor sediments, West Falmouth, MA, for more than 30 years. The 5730-yr half-life of 14C makes this isotope ideal for the detection of fossil-fuel-derived contaminants (14C free) within different fractions of natural organic matter (modern 14C content) in environmental matrixes. Samples of both contaminated and uncontaminated sediments were sequentially treated, first by solvent extraction, followed by saponification, and then acid hydrolysis. Radiocarbon analysis of the sediment residues and select extracts was performed to probe for the presence of fossil fuel contaminants and/or their metabolites in different pools of sedimentary organic matter. Our results indicate that the majority of fossil carbon is solvent-extractable and has not been incorporated in the insoluble organic matter in sediment. Unextracted sediments contaminated with petroleum contain significantly less 14C than extracted sediments, and isotope mass balance calculations suggest that up to approximately 9% of the total organic carbon (TOC) in the petroleum contaminated sediment horizons is derived from solvent-extractable petroleum. These estimates are similar to values calculated when the total quantities of oil (measured by gas chromatography with flame ionization detector (GC-FID)) are compared to TOC content (determined by elemental analysis). These results pave the way for applications of this isotopic approach to more complex environmental systems where the fate of contaminants is less certain.  相似文献   

19.
Many regulatory frameworks for sediment quality assessment include consideration of contaminant bioavailability. However, the "snap-shots" of metal bioavailability provided by analyses of porewaters or acid-volatile sulfide-simultaneously extractable metal (AVS-SEM) relationships do not always contribute sufficient information. The use of inappropriate or inadequate information for assessing metal bioavailability in sediments may result in incorrect assessment decisions. The technique of diffusive gradients in thin films (DGT) enables the in situ measurement of metal concentrations in waters and fluxes from sediment porewaters. We utilized the DGT technique to interpret the bioavailability of copper to the benthic bivalve Tellina deltoidalis in sediments of varying properties contaminated with copper-based antifouling paint particles. For a concentration series of copper-paint contaminated sandy, silty-sand, and silty sediment types, DGT-probes were used to measure copper fluxes to the overlying water, at the sediment-water interface, and in deeper sediments. The overlying water copper concentrations and DGT-Cu fluxes were shown to provide excellent exposure concentration-response relationships in relation to lethal effects occurring to the copper-sensitive benthic bivalve, T. deltoidalis. The study demonstrates the strength of the DGT technique, which we expect will become frequently used for assessing metal bioavailability in sediments.  相似文献   

20.
Fly ash sludges from an abandoned metal smelter were dumped into the shallow inner part of the Mecklenburg Bay until 1971, representing the most severe heavy metal contamination hot-spot along the German coast. Half of the dumped Zn (455 t) and Pb (173 t) inventory was found to be spread from the originally 0.5 km2 hot-spot site to a now 360 km2 affected adjacent area. Wave-driven resuspension during gale events produced large pulses of contaminated sediments from this hot-spot due to the only 23 m water depth. Instantaneous sediment mixing down to 10 cm occurs during such a wave event as evidenced by activity profiles of the short-lived radionuclide 234Th in sediment cores. According to these estimated sediment exchange fluxes in the transport bottom area, each wave event may have mobilized Zn and Pb pulses on the order of several hundreds of kilograms from the dump site, sufficient to build up a plume in sediments of the outer bay area. With each centimeter (approximately 5 yr) of additional natural sediment capping, however, the amount of metal remobilization would decrease by about 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号