首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of particle size on rotary bending fatigue behaviour was studied for powder metallurgy 2024 aluminium alloy composites reinforced with 10 wt% silicon carbide particles (SiCp ). Average particle sizes of 5, 20 and 60 μm were evaluated. Particle size had a significant influence on fatigue strength, indicating an increased fatigue strength with decreasing particle size. The composite with 5 μm SiC particles showed higher fatigue strength than the unreinforced alloy. The incorporation of 20 μm SiC particles led to an increase in fatigue strength at a high stress level, but the improvement diminished with decreasing stress level, and a slightly decreased fatigue strength was observed at low stress level, as compared with the unreinforced alloy. The composite with 60 μm SiC particles exhibited a considerable decrease in fatigue strength. Fatigue cracks initiated at several different microstructural features, e.g. surface defects, inclusions and particle–matrix interfaces, and crack initiation was considerably affected by particle size. Fatigue strength was found to depend strongly on the resistance to crack initiation, because there was no discernible difference in small crack growth between the unreinforced alloy and the composites, particularly at a low maximum stress intensity factor.  相似文献   

2.
Axial fatigue tests have been performed at three different stress ratios, R, of ?1, 0 and 0.4 using smooth specimens of an aluminium alloy composite reinforced with SiC particulates of 20 μm particle size. The effect of stress ratio on fatigue strength was studied on the basis of crack initiation, small crack growth and fracture surface analysis. The stress ratio dependence of fatigue strength that has been commonly observed in other materials was obtained, in which fatigue strength decreased with increasing stress ratio when characterized in terms of stress amplitude. At R=?1, the fatigue strength of the SiCp/Al composite was the same as that of the unreinforced alloy, but at R= 0 and 0.4 decreased significantly, indicating a detrimental effect of tensile mean stress in the SiCp/Al composite. The modified Goodman relation gave a fairly good estimation of the fatigue strength at 107 cycles in the unreinforced alloy, but significantly unconservative estimation in the SiCp/Al composite. At R= 0 and 0.4, cracks initiated at the interfaces between SiC particles and the matrix or due to particle cracking and then grew predominantly along the interfaces, because debonding between SiC particles and the matrix occurred easily under tensile mean stress. Such behaviour was different from that at R=?1. Therefore, it was concluded that the decrease in fatigue strength at high stress ratios and the observed stress ratio dependence in the SiCp/Al composite were attributed to the different fracture mechanisms operated at high stress ratios.  相似文献   

3.
High cycle fatigue (HCF) and very high cycle fatigue (VHCF) properties of two 18Ni maraging steels with different cobalt and titanium content and similar static strength are investigated. Ultrasonic fatigue tests are performed with thin sheets with nitrided surfaces at load ratio R = 0.1. The specimens are mounted on a carrier and are forced to joint vibrations at approximately 20 kHz. The increase of Co content and the elimination of Ti improved the HCF and VHCF strength of 18Ni maraging steel. TiN inclusions if Ti is present and Al2O3 inclusions in the Ti free material with sizes (areaINC)1/2 smaller than 10 µm were preferential crack initiation locations. Considering inclusions as initial cracks, the minimum stress intensity range for VHCF failure is 1.2 MPam1/2 for TiN inclusions and 1.8 MPam1/2 for Al2O3 inclusions. Data scatter may be slightly reduced if lifetimes are presented versus stress amplitudes multiplied by (areaINC)1/12 rather than in an S–N diagram.  相似文献   

4.
Small internal fatigue cracks initiated in Ti‐6Al‐4V in the very high cycle regime were detected by synchrotron radiation microcomputed tomography (SR‐μCT) at SPring‐8 in Japan. The initiation and growth behaviours of the cracks were nondestructively observed, and the da/dNΔK relationship was measured and compared with that obtained in a high vacuum environment. SR‐μCT revealed that more than 20 cracks were initiated in one specimen. The crack initiation life varied widely from 20% to 70% of the average fatigue life and had little influence on the growth behaviour that followed. The initiation site size of each internal crack detected in one specimen was comparable with the size of the fracture origins obtained in ordinary fatigue tests. These results suggest that the surrounding microstructures around the initiation site are likely a dominant factor on the internal fracture rather than the potential initiation site itself. The internal crack growth rates were lower than 10?10 m/cycle, and extremely slow rates ranging from 10?13 to 10?11 m/cycle were measured in a lower ΔK regime below 5 MPa√m. The internal crack growth rate closely matched that of surface cracks in a high vacuum, and the reason for the very long life of internal fatigue fractures was believed to result from the vacuum‐like environment inside the internal cracks.  相似文献   

5.
Fatigue behaviour of AISI 310 stainless steel has been investigated up to very high cycles. The fatigue crack initiation sites were found at the surface of the material. Persistent slip bands developed at the surface of the specimens led to the crack initiation. At lower stress levels, shallow persistent slip bands were found at the surface of the specimens, and the fatigue limit was obtained. Notched specimens showed lower fatigue lives. Notched specimens with higher stress concentration factor (Kt) showed higher fatigue strength reduction factor (Kf). It was found that shallow notches of depth ~100 µm may reduce the fatigue life substantially.  相似文献   

6.
The very high cycle fatigue properties of spring steel 60SiCrV7 for automotive suspension system with different hydrogen contents were studied by using ultrasonic fatigue testing and fatigue crack growth testing. The results show that the S–N curves exhibit continuous drop of fatigue lives and no obvious horizontal line exists. Similar fracture surface features were observed for all the specimens that failed mainly from internal inclusions with surrounding granular bright facet (GBF). Fatigue strength decreases remarkably with increasing hydrogen content. The applied stress intensity factor range at the periphery of GBF ΔKGBF is approximately proportional to 1/3 power of the square of GBF area. The average values of ΔKGBF for uncharged specimens are close to crack growth threshold ΔKth, which indicates that ΔKGBF could be regarded as the threshold value governing the beginning of stable fatigue crack propagation. The increase of hydrogen content tends to reduce ΔKGBF.  相似文献   

7.
In fatigue critical applications, Ti-10 V-2 Fe-3 Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10 V-2 Fe-3 Al alloy in very high cycle fatigue(VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initiation mechanism, from internal crack initiation to surface crack initiation and from α_p cleavage to α_s/βdecohesion, occur when the stress ratio(R) and stress level are reduced. Fatigue limits exist at N_f = 6 × 10~7 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of α_p facets and α_s/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from-0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.  相似文献   

8.
ABSTRACT We examine micromechanisms of fatigue crack initiation and growth in a cast AM60B magnesium alloy by relating dendrite cell size and porosity under different strain amplitudes in high cycle fatigue conditions. Fatigue cracks formed at casting pores within the specimen and near the surface, depending on the relative pore sizes. When the pore that initiated the fatigue crack decreased from approximately 110 µm to 80 µm, the fatigue life increased two times. After initiation, the fatigue cracks grew through two distinct stages before final overload specimen failure. At low maximum crack tip driving forces (Kmax < 2.3 MPa√m), the fatigue crack propagated preferentially through the α‐Mg dendrite cells. At high maximum crack tip driving forces (Kmax > 2.3 MPa√m), the fatigue crack propagated primarily through the β‐Al12Mg17 particle laden interdendritic regions. Based on these observations, any proposed mechanism‐based fatigue model for cast Mg alloys must incorporate the change in growth mechanisms for different applied maximum stress intensity factors, in addition to the effect of pore size on the propensity to form a fatigue crack.  相似文献   

9.
Rotating bending fatigue test at very high cycle regimes was carried out on martensitic steel of 2Cr13 in air and 3.5% NaCl environment. The result showed that the S–N curve presents a stepwise tendency over the range of 106–108 cycles in both air and 3.5% NaCl environment. In air fatigue, cracks initiated from the sample surface and inclusions at subsurface and no typical fish eye feature in very high cycle fatigue were observed for all samples tested up to 6 × 108 cycles. In 3.5% NaCl solution, a fatigue limit over the range of 106–108 cycles exhibited with the corrosion fatigue strength reduced by 47% compared to the air fatigue. Multiple cracks initiated from surface and the number of crack origins increased with increasing stress level and surface proportion of fatigue propagation increased as number of cycles increased.  相似文献   

10.
SHORT AND LONG FATIGUE CRACK GROWTH IN A SiC REINFORCED ALUMINIUM ALLOY   总被引:1,自引:0,他引:1  
Fatigue crack growth behaviour in a 15 wt% SiC particulate reinforced 6061 aluminium alloy has been examined using pre-cracked specimens. Crack initiation and early growth of fatigue cracks in smooth specimens has also been investigated using the technique of periodic replication. The composite contained a bimodal distribution of SiC particle sizes, and detailed attention was paid to interactions between the SiC particles and the growing fatigue-crack tip. At low stress intensity levels, the proportion of coarse SiC particles on the fatigue surfaces was much smaller than that on the metallographic sections, indicating that the fatigue crack tends to run through the matrix avoiding SiC particles. As the stress intensity level increases, the SiC particles ahead of the growing fatigue crack tip are fractured and the fatigue crack then links the fractured particles. The contribution of this monotonic fracture mode resulted in a higher growth rate for the composite than for the unreinforced alloy. An increase in the proportion of cracked, coarse SiC particles on the fatigue surface was observed for specimens tested at a higher stress ratio.  相似文献   

11.
Fatigue crack initiation behaviour is investigated at room temperature in the (α2-Ti3Al and γ-TiAl) alloy. High cycle fatigue tests ranging up to 1010 cycles are carried out on the powder metallurgy (P/M) bar specimens under different loading conditions with a stress ratio of R=0.1 and R=0.5. Microstructural characterization and fracture surface analysis are also investigated by optical (OM) and scanning electron microscopy (SEM). Ti–Al alloy studied here shows two phases in microstructure (nearly refined lamellar thickness) composed of α2-Ti3Al and γ-TiAl (hereafter called γ+α2 alloys) and fracture mechanism is explained with different plastic incompatibilities between the two phases.  相似文献   

12.
Fretting fatigue fracture of industrial machines is sometimes experienced after a long period of operation. It has been a question whether the fatigue limit which means infinite life really exists in fretting fatigue or not. Fretting fatigue tests in ultra high cycle region up to 109 cycles were performed. Test results showed that the SN curve had a knee point around 2 × 107 cycles and a clear fatigue limit was observed in the giga‐cycle regime for partial slip conditions. An electropotential drop technique was applied to detect the crack growth behaviour under the contact pad. The real‐time measurement of crack depth during the fretting fatigue test at the fatigue limit showed that a crack initiated at an early stage and then ceased to grow after 2 × 107 cycles and the crack became a non‐propagating crack. These results indicated that the fatigue limit exists in fretting fatigue and infinite endurance is achieved by the mechanism of forming a non‐propagating crack.  相似文献   

13.
Alumina/silicon carbide (Al2O3/SiC) composite ceramics with large self‐crack‐healing ability, high strength and high heat‐resistance limit temperature for strength were developed and subjected to three‐point bending. A semicircular surface crack 100 μm in diameter was made on each sample. Crack‐healing behaviour was systematically studied, as functions of crack‐healing temperature and healing time, and the fatigue strengths of the crack‐healed sample at room temperature and 1373 K were investigated. Four main conclusions were drawn from the present study. (1) Al2O3/SiC composite ceramics have the ability to heal after cracking from 1273to 1673 K in air. (2) The heat‐resistance limit temperature for strength of the crack‐healed sample is ?1573 K, and ?68% of the samples fractured from outside the crack‐healed zone in the testing‐temperature range 873–1573 K. (3) The crack‐healed sample exhibited very high fatigue limit at room temperature and also 1373 K. (4) The large self‐crack‐healing ability is a desirable technique for the high structural integrity of ceramic component.  相似文献   

14.
The effect of inclusions on crack initiation and propagation in gigacycle fatigue was investigated experimentally and analytically in six high strength low alloy steels. Fatigue testing was performed at very high numbers of cycles through ultrasonic fatigue tests at 20 kHz. Inclusions at subsurface are common sites for fatigue crack nucleation in these alloys when cycles to failure was >107 cycles. A significant change in the slope of the S–N curve was observed accompanying the transition from surface to subsurface crack initiation. A deterministic model has been developed to predict the total fatigue life, i.e. crack initiation life and crack propagation life, from the measured inclusion sizes. The predicted fatigue strength agreed reasonably well with the experimental results. It is a tendency that smaller inclusions are associated with longer fatigue life. The results demonstrated that the portions of life attributed to subsurface crack initiation between 107 and 109 cycles are >99%.  相似文献   

15.
The crack‐healing behaviour of machining cracks in Si3N4/20 wt% SiC composite was investigated. The machining cracks were introduced by a heavy machining process, during the creation of a semicircular groove. The machined specimens were healed at various temperatures and times in air. The optimized crack‐healing condition of the machined specimens was found to be a temperature of 1673 K and a time of 10 h. The specimens healed by this condition exhibited almost the same strength as the smooth specimens healed. Moreover, the bending strengths and the fatigue limits of the machined specimens healed were systematically investigated at temperatures from room temperature to 1673 K. The machined specimens healed at the optimized condition exhibited an almost constant bending strength (~700 MPa) up to 1673 K. Also, the specimens exhibited considerably high cyclic and static fatigue limits at temperatures from 1073 to 1573 K. These results demonstrated that the crack‐healing could be an effective method for improving the structural integrity and reducing machining costs of the Si3N4/SiC composite ceramic.  相似文献   

16.
Spray‐formed hypereutectic aluminium silicon alloy DISPAL® S232–T6x is cycled with variable amplitude at ultrasonic frequency up to the very high cycle fatigue (VHCF) regime under fully reversed tension–compression loading. The Powder Metallurgy alloy is tested using a Gaussian cumulative frequency distribution of load cycles, and lifetimes are compared with constant amplitude data. Miner calculation delivers mean damage sums between 0.5 and 0.9 for mean lifetimes between 8 × 107 and 1.6 × 1010 cycles, respectively. Cracks are initiated at voids, at inclusions or at distributed inhomogeneities (porous areas or oxides) at the surface or in the interior. In situ analysis of vibration properties indicates that cracks are formed and start growing from the beginning of fatigue cycling, even if failure occurs in the very high cycle fatigue regime. Crack initiation stage is negligible. Lifetime prediction calculation is performed using an adapted Paris‐law and considering lifetime as cycles necessary to propagate an initial crack to failure. Measured and predicted mean lifetimes differ by factor 0.4–1.0. Large crack‐initiating defects strongly reduce the fatigue lifetimes, which is successfully covered in the crack propagation model.  相似文献   

17.
This work presents experimental results on effects of severe plastic deformation (SPD) and subsequent natural ageing on tensile mechanical properties and fatigue crack growth resistance of fine‐grained 7075 Al alloy. The alloy was subjected to equal channel angular pressing (ECAP) after solution treatment. Fatigue crack propagation tests were conducted in room condition, at load ratio R = 0.1 and different load ranges on small disk shaped compact tension specimens. Fatigue fracture surface is also investigated using scanning electron microscopy observations and showed more ductile fatigue crack growth in the unECAPed specimen. Despite the increased tensile strength after ECAP, the ductility that controls low‐cycle fatigue behaviour has decreased. It is found that ECAP has resulted in a remarkable change in Paris regime parameters and a significant increase in fatigue crack growth rate. The decrease in fatigue crack growth resistance and ΔKc after ECAP can be attributed to the decrease in alloy's ductility.  相似文献   

18.
Fatigue crack initiation in alpha-beta titanium alloys   总被引:1,自引:0,他引:1  
Fatigue crack initiation constitutes that part of total life, which includes the nucleation life, Nn, of an initial crack-like-discontinuity (CLD) and the growth life, Ns, of the CLD to an observable size called an initiated crack. This sequence dominates the total fatigue life of defect-free alpha-beta titanlum alloys. The mechanisms of CLD formation and its growth to the initiated crack at room temperature are reviewed in light of controlling microstructure and other metallurgical features. Recommendations are made for improving fatigue crack initiation resistance with consideration to practical limitations.  相似文献   

19.
Fatigue measurements were performed up to the very high cycle fatigue regime in order to investigate pit-to-crack transition in 12% Cr steam turbine blade steel. Pre-pitted and smooth specimens were tested in air and aerated 6 ppm Cl solution. SN curves for different stress ratios were determined and a stress ratio dependent critical pit size for pit-to-crack transition with subsequent failure was found. Early crack initiation and small crack growth were observed in the process of development and by fractography using field emission scanning electron microscopy. Fatigue crack growth rates (FCGR) for cracks emanating from pits were determined. Good similarity of FCGR curves for short and long cracks was obtained by normalising the stress intensity factor ranges with the threshold values.  相似文献   

20.
Current fundamental academic research in the field of Gigacycle Fatigue, now frequently referred to as Very High Cycle Fatigue (VHCF), is strongly related to the pioneering work of Professor Claude Bathias during the last two decades. Claude Bathias passed away in April 2015. In the present paper, dedicated to his memory, his most important contributions in conducting and initiating fatigue studies in the area of Gigacycle Fatigue are highlighted. In light of what is known today about the details of fatigue behaviour in the range of up to 1010 cycles and more, the pivotal role of Claude Bathias cannot be overestimated. He was among the first to demonstrate, in painstaking ultrasonic fatigue studies, that a fatigue limit in the traditional sense does not exist in the Gigacycle regime. In his subsequent work on different materials, he substantiated his earlier findings experimentally and, in close collaboration with Paul Paris, quantitatively described the mechanisms of subsurface and surface VHCF failures, originating from inclusions. Together they showed that, in the VHCF range, most of the fatigue life is spent in crack initiation and not in propagation. Claude Bathias’ work stimulated worldwide research and was instrumental in the emergence and development of the current new field of Very High Cycle Fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号