首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper aims to investigate the effect of ultrasonic peening treatment on the very high cycle fatigue resistance of an AA7075 friction stir welded joint. Microscopy observation, microhardness and X‐ray diffraction measurements were carried out to characterize the treated surface of peened specimens. Fatigue crack initiation sites were investigated through scanning electron microscope, and the role of enhanced surface on fatigue resistance was analyzed. The results indicate that a sensible fatigue strength improvement can be obtained through application of ultrasonic peening treatment and that fatigue cracks can initiate from the interior of the specimen. To clarify the fatigue failure mechanism, we analyzed the microstructure characteristics, compressive residual stress profile and intermetallic inclusion distribution in the surface layers, and we discussed the capability of ultrasonic peening treatment to hinder the surface crack initiation.  相似文献   

2.
The present paper deals with the influence of non-metallic inclusions on fatigue life in the high cycle fatigue and the very high cycle fatigue regime. For that purpose, several castings of steel 42CrMo4 (AISI 4140, DIN EN 1.7225) were produced by using recently developed novel metal-melt filters. The specimens were tested in hot-isostatically pressed and heat treated condition. After fatigue failure every fracture surface was intensively investigated by scanning electron microscopy in order to define the type, the size, the chemical composition, the morphology and the location of the crack initiating discontinuity. Subsequently, Murakami’s √area model was used for the evaluation of the influence of non-metallic inclusions on the fatigue life. In the present investigation four common types of chemical compositions of crack initiating discontinuities were identified. Furthermore, four different internal failure types and their influence on the fatigue life in cast steel were investigated and described. Thus, the present contribution proposes a basic correlation determined from fatigue lives in case of various internal crack initiation types. The key parameters for fatigue life prediction in case of internal fatigue failure in the very high cycle fatigue regime are (i) the size of the crack initiating discontinuity, (ii) the inclusion depth and (iii) the crack initiating failure type.  相似文献   

3.
Effects of ultrasonic nanocrystal surface modification (UNSM) on the very high cycle fatigue response of AISI 310 stainless steel have been investigated. The higher impact force used in UNSM treatment showed a higher fatigue life improvement. The fatigue life improvement was higher in crack initiation from the surface of specimens. The subsurface crack initiation depth in the alloy increased with increase in the fatigue failure cycles. It was concluded that UNSM treatment can increase the life of the alloy significantly up to very high cycle fatigue.  相似文献   

4.
When high‐strength steels are subjected to very high‐cycle fatigue loading, crack initiation site shifts from surfaces to the interior, and a fish‐eye forms on the fracture surface. Majority of the fatigue life is estimated to be associated with the formation of this internal crack morphology. In the present work, features of such internal cracks in two high‐strength steels are studied. Specifically, three initiation patterns are investigated. A general internal crack initiating scenario is proposed base on an understanding of dislocation slip in the materials. A simplified threshold is calculated from Young's modulus and interatomic spacing, defining the transition from the initiation stage to the crack propagation. The relationship between internal crack initiation and slower descending S‐N curves is discussed.  相似文献   

5.
6.
Fatigue behaviour of AISI 310 stainless steel has been investigated up to very high cycles. The fatigue crack initiation sites were found at the surface of the material. Persistent slip bands developed at the surface of the specimens led to the crack initiation. At lower stress levels, shallow persistent slip bands were found at the surface of the specimens, and the fatigue limit was obtained. Notched specimens showed lower fatigue lives. Notched specimens with higher stress concentration factor (Kt) showed higher fatigue strength reduction factor (Kf). It was found that shallow notches of depth ~100 µm may reduce the fatigue life substantially.  相似文献   

7.
Very high cycle fatigue tests under axial loading at frequencies of 95 Hz and 20 kHz were performed to clarify the effect of loading type on fatigue properties of a high strength bearing steel in combination with experimental result of this steel under rotating bending. As a result, this steel represents the single P-S-N (probabilistic-stress-life) curve characteristics for surface-induced fracture and interior inclusion-induced fracture, just like that under rotating bending. However, fatigue strength is lower, where the run-out stress at 109 cycles is evaluated to be 588 MPa, less than that under rotating bending with about 858 MPa. Occurrence probability of larger and deeper inclusion-induced fracture is much higher than that under rotating bending. Furthermore, the formation process of fine granular area (FGA) is independent of the type and frequency of loading, which is very slow and is explained as the crack nucleation process under the special dislocation mechanism. The stress intensity factor range at the front of FGA, ΔKFGA, is approximately regarded as the threshold value controlling the stable propagation of interior crack. For the control volume of specimen under axial loading, the estimated value of fatigue limit by FGA is similar to experimental run-out stress value at 109 cycles, but that by inclusion is larger. However, the corresponding estimated results under rotating bending are all conservative.  相似文献   

8.
In this paper, we study the temperature field associated with the propagation of a fatigue crack in a very high cycle fatigue regime during ultrasonic fatigue testing. We use a Paris–Hertzberg crack growth law to compute the evolution of the crack and a perfectly elastic–plastic constitutive law to compute the plastic dissipation per cycle at the tip of the crack. A thermomechanical finite element model is proposed to estimate the evolution of the temperature field during the crack propagation. Numerical results obtained agree fairly well with experimental results.  相似文献   

9.
Rotating bending fatigue test at very high cycle regimes was carried out on martensitic steel of 2Cr13 in air and 3.5% NaCl environment. The result showed that the S–N curve presents a stepwise tendency over the range of 106–108 cycles in both air and 3.5% NaCl environment. In air fatigue, cracks initiated from the sample surface and inclusions at subsurface and no typical fish eye feature in very high cycle fatigue were observed for all samples tested up to 6 × 108 cycles. In 3.5% NaCl solution, a fatigue limit over the range of 106–108 cycles exhibited with the corrosion fatigue strength reduced by 47% compared to the air fatigue. Multiple cracks initiated from surface and the number of crack origins increased with increasing stress level and surface proportion of fatigue propagation increased as number of cycles increased.  相似文献   

10.
11.
In SN diagrams for high strength steels, experimental data in the usual surface fracture mode appears at higher stress levels with fewer loading cycles, whereas the data in the interior fracture mode tends to appear at lower stress levels with the very long fatigue life. Thus, the duplex SN property was usually confirmed for those high strength steels in such a very high cycle regime. In the case of interior fracture mode, there can be several different types of the crack initiation with/without nonmetallic inclusion at the crack initiation site, and different crack initiation types can be found even for the surface fracture modes in the conventional fatigue life region. In the present work, the authors have attempted to review the overall feature of these fatigue fracture modes appearing at the usual life regime and the very high cycle regime.  相似文献   

12.
Ultrasonic fatigue tests were performed on friction stir welded AA6061 joint to investigate very high cycle fatigue (VHCF) behaviors. As a result, almost all the fatigue cracks are initiated from local plastic slip markings around the boundary between thermo-mechanically affected zone and heat affected zone. The fatigue strength decreases from the top to root of the welded joint, owing to the variation of plastic deformation history and temperature distribution through the thickness. In fractography, the fatigue crack initiation site is surrounded by a semicircular flat zone, of which the formation in VHCF regime accounts for more than 98% of the total fatigue life.  相似文献   

13.
The effect of particle size on rotary bending fatigue behaviour was studied for powder metallurgy 2024 aluminium alloy composites reinforced with 10 wt% silicon carbide particles (SiCp ). Average particle sizes of 5, 20 and 60 μm were evaluated. Particle size had a significant influence on fatigue strength, indicating an increased fatigue strength with decreasing particle size. The composite with 5 μm SiC particles showed higher fatigue strength than the unreinforced alloy. The incorporation of 20 μm SiC particles led to an increase in fatigue strength at a high stress level, but the improvement diminished with decreasing stress level, and a slightly decreased fatigue strength was observed at low stress level, as compared with the unreinforced alloy. The composite with 60 μm SiC particles exhibited a considerable decrease in fatigue strength. Fatigue cracks initiated at several different microstructural features, e.g. surface defects, inclusions and particle–matrix interfaces, and crack initiation was considerably affected by particle size. Fatigue strength was found to depend strongly on the resistance to crack initiation, because there was no discernible difference in small crack growth between the unreinforced alloy and the composites, particularly at a low maximum stress intensity factor.  相似文献   

14.
The fatigue life of SUH660 steel is dominated by crack initiation in the region of very high cycle fatigue owing to the new crack initiation behavior near the tip of temporarily arrested crack. The effect of internal hydrogen on very high cycle fatigue life is investigated focused on crack initiation life via fatigue and Vickers hardness tests. Hydrogen inhibits cracks initiation, and accelerates the increase in crack initiation lives with decreasing stress in low and medium hardness zones. Hydrogen increases the hardness in low and medium hardness zones. Hydrogen extends new crack initiation lives and causes longer very high cycle fatigue life.  相似文献   

15.
Torsional fatigue tests have been carried out on overaged and hydrogen charged specimens of 2024 aluminium in gaseous hydrogen and humid air. Hydrogen charging was found to significantly increase the number of fatigue crack initiation sites compared with uncharged specimens tested in argon, resulting in an overall reduction in fatigue life. Fatigue testing in gaseous hydrogen and humid air influenced both initiation and propagation of cracks. The fracture sites of both charged and uncharged specimens were similar, and the fracture mode was predominantly tensile in all specimens. However, specimens tested in humid air showed small amounts of longitudinal and transverse fracture, with ≈5% shear at low humidity and 10% at high humidity.  相似文献   

16.
The influences of major factors including applied stress amplitude, inclusion size and hydrogen content on granular-bright-facet (GBF) size of high strength steels in the very high cycle fatigue regime were studied in this article. It was found that the GBF size is determined by the applied stress amplitude and material hardness. If the applied stress amplitude is lower, the GBF size is larger. When a specimen containing bigger inclusions, the applied stress amplitude to form GBF can be reduced which results in the increase of GBF size. Hydrogen has different effects on the GBF size. The related reasons were discussed.  相似文献   

17.
The fatigue behaviour of a titanium alloy Ti‐6Al‐4V with equiaxed microstructure (EM) under different values of tensile mean stress or stress ratio (R) was investigated from high‐cycle fatigue (HCF) to very‐high‐cycle fatigue (VHCF) regimes via ultrasonic axial cycling. The effect of mean stress or R on the fatigue strength of HCF and VHCF was addressed by Goodman, Gerber, and Authors' formula. Three types of crack initiation, namely, surface‐with‐RA (rough area), surface‐without‐RA, and interior‐with‐RA, were classified. The maximum value of stress intensity factor (SIF) at RA boundary for R < 0 keeps constant regardless of R in HCF and VHCF regimes. The SIF range at RA boundary for R > 0 also keeps constant regardless of R in VHCF regime, but this value decreases linearly with the increase of R for surface RA cases. The microstructure observation at RA regions gives a new result of nanograin formation only in the cases of negative stress ratios for the titanium alloy with EM, which is explained by the mechanism of numerous cyclic pressing.  相似文献   

18.
In this paper, the study of the temperature variation during fatigue tests was carried out on different materials (steels and aluminium alloys). Tests were performed at ambient temperature using a piezoelectric fatigue system (20 kHz). The temperature field was measured on the surface of the specimen, by means of an infrared camera.
Just at the beginning of the test, it was observed that the temperature increased, followed by a stabilization which corresponds to the balance between dissipated energy associated with microplasticity and the energy lost by convection and radiation at the specimen surface and by conduction inside the specimen. At the crack initiation, the surface temperature suddenly increases (whatever the localization of the initiation), which allows the determination of the number of cycles at the crack initiation and the number of cycles devoted to the fatigue crack propagation. In the gigacycle fatigue domain, more than 92% of the total life is devoted to the initiation of the crack.
So, the study of the thermal dissipation during the test appears a promising method to improve the understanding of the damage and failure mechanism in fatigue and to determine the number of cycles at initiation.  相似文献   

19.
In this paper, the feedback signal of ultrasonic fatigue system was used to deduce the accumulated fatigue damage in situ using the ultrasonic nonlinearity parameter. It was observed that, compared with the decrease in resonant frequency, the ultrasonic nonlinearity parameter shows a greater sensitivity to fatigue damage evolution (i.e. crack initiation and propagation). Ultrasonic nonlinearity parameters obtained from tests conducted under various environmental humidity levels were monitored and analysed. Through changes in the ultrasonic nonlinearity parameter, it was concluded that both of the fatigue crack initiation life and crack propagation life were reduced by increasing the humidity levels.  相似文献   

20.
This paper presents the results of experimental investigation on fatigue behaviors of friction stir welded joints in AA7075-T6 with ultrasonic fatigue test system (20 kHz). Two kinds of particles, Fe-rich intermetallic compounds and Mg2Si-based particles, governed the fatigue crack initiation. The plastic deformation and recrystallization during welding process led to the changes in particle size and micro crack occurrence between thermo-mechanically affected zone (TMAZ) and nugget zone (NZ). Therefore, the fatigue crack initiation sites leaned to be located at the TMAZ in short fatigue life, or at the NZ in very high cycle fatigue regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号