首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-catalytic and catalytic degradation of waste plastics (high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS)) using spent fluid catalytic cracking (FCC) catalyst into liquid product were comparatively studied with a stirred semi-batch reactor at 400 ‡C, under nitrogen stream. Liquid product characteristics were described by cumulative distribution as a function of lapse time of reaction, paraffin, olefin, naphthene and aromatic (PONA) composition, and also carbon number distribution on plastic type of reactant. For degradation of waste PE with relatively high degradation temperature, the effect of adding spent FCC catalyst greatly appeared on cumulative distribution of liquid product with a reaction lapse time, whereas those for waste PP and PS with low degradation temperature showed a similar trend in both non-catalytic and catalytic degradation at 400 ‡C. In PONA and carbon number distribution of liquid product, the characteristics of waste PS that was mainly degraded by end chain scission mechanism were not much altered in presence of spent FCC catalyst. However, waste polyolefinic polymer that was degraded by a random chain scission mechanism significantly differed on PONA and carbon number distribution of liquid product with or without spent FCC catalyst. The addition of spent FCC catalyst in degradation of polyolefinic polymer, which economically has a benefit in utilization of waste catalyst, significantly improved the light olefin product by its high cracking ability and also the aromatic product by cyclization of olefin as shape selectivity in micropore of catalyst.  相似文献   

2.
Thermal and catalytic degradation using spent fluid catalytic cracking (FCC) catalyst of waste high-density polyethylene (HDPE) at 430 °C into fuel oil were carried out with a stirred semi-batch operation. The product yield and the recovery amount, molecular weight distribution and paraffin, olefin, naphthene and aromatic (PONA) distribution of liquid product by catalytic degradation using spent FCC catalyst were compared with those by thermal degradation. The catalytic degradation had lower degradation temperature, faster liquid product rate and more olefin products as well as shorter molecular weight distributions of gasoline range in the liquid product than thermal degradation. These results confirmed that the catalytic degradation using spent FCC catalyst could be a better alternative method to solve a major environmental problem of waste plastics. This paper is dedicated to Dr. Youn Yong Lee on the occasion of his retirement from Korea Institute of Science and Technology.  相似文献   

3.
A mixture of hospital post-commercial polymer waste (LDPE/HDPE/PP/PS) was pyrolyzed over various catalysts using a fluidized-bed reactor operating isothermally at ambient pressure. The yield of volatile hydrocarbons with zeolitic catalysts (ZSM-5 > MOR > USY) were higher than with non-zeolitic catalysts (MCM-41 > ASA). MCM-41 with large mesopores and ASA with weaker acid sites resulted in a highly olefinic product mixture with a wide carbon number distribution, whereas USY yielded a saturate-rich product mixture with a wide carbon number distribution and substantial coke levels. The systematic experiments discussed in this paper show that the use of various catalysts improves the yield of hydrocarbon products and provide better selectivity in the product distributions. A novel developed model based on kinetic and mechanistic considerations which take into account chemical reactions and catalyst deactivation for the catalytic degradation of commingled polymer waste has been investigated. This model represents the benefits of product selectivity for the chemical composition such as alkanes, alkenes, aromatics and coke in relation to the performance and the particle size selection of the catalyst used as well as the effect of the fluidizing gas and reaction temperature.  相似文献   

4.
A commingled post-consumer polymer (CPW#1) was pyrolysed over spent fluid catalytic cracking (FCC) commercial catalyst (ECat-1) using a laboratory fluidised-bed reactor operating isothermally at ambient pressure. The influence of reaction conditions including catalyst, temperature, ratios of commingled polymer to catalyst feed and flow rates of fluidising gas was examined. The conversion for spent FCC commercial catalyst (82.7 wt%) gave much higher yield than silicate (only 14.2 wt%) and the highest yield (nearly 87 wt%) was obtained for ZSM-5. Greater product selectivity was observed with ECat-1 as a recycled catalyst with about 56 wt% olefins products in the C3–C7 range. The selectivity could be further influenced by changes in reaction conditions. Valuable hydrocarbons of olefins and iso-olefins were produced by low temperatures and short contact times used in this study. It is also demonstrated that the use of spent FCC commercial catalyst and under appropriate reaction conditions can have the ability to control both the product yield and product distribution from polymer degradation, potentially leading to a cheaper process with more valuable products.  相似文献   

5.
A mixture of post-consumer polyethylene/polypropylene/polystyrene (PE/PP/PS) with polyvinyl chloride (PVC) waste was pyrolyzed over cracking catalysts using a fluidizing reaction system operating isothermally at ambient pressure. The influences of catalyst types and reaction conditions including reaction temperatures, ratios of catalyst to plastic feed, flow rates of fluidizing gas and catalyst particle sizes were examined. Experiments carried out with various catalysts gave good yields of valuable hydrocarbons with differing selectivity in the final products dependent on reaction conditions. A model based on kinetic and mechanistic considerations associated with chemical reactions and catalyst deactivation in the acid-catalyzed degradation of plastics has been developed. The model gives a good representation of experimental results from the degradation of commingled plastic waste. The results of this study are useful for determining the effects of catalyst types and reaction conditions on both the product distribution and selectivity from hospital plastic waste, and especially for the utilization of post-use commercial FCC catalysts for producing valuable hydrocarbons in a fluidizing cracking process.  相似文献   

6.
以混合废塑料和焦化蜡油为原料,共催化裂解制备燃料油,克服了废塑料裂解中塑料粘稠度大且传热效率低、裂解炉中温度极不均匀、反应时间长、气体和固体收率高、液体收率低和易结焦等难题。详细考察焦化蜡油与混合废塑料质量比和催化剂用量对产物组成的影响以及FCC催化剂的重复使用性能。结果表明,在焦化蜡油与混合废塑料质量比为2、FCC催化剂用量为混合废塑料质量的10%、终温460 ℃并保持4 h条件下,燃料油收率达到96.67%,气体收率和釜残率分别仅有0.27%和1.53%。焦化蜡油的添加使液相产物中重组分增多,轻组分减少。FCC催化剂的重复使用性能好,催化剂重复使用5次,液体收率大于85%。采用混合废塑料与焦化蜡油共催化裂解的工艺不仅为“白色污染”的处理开辟了一条新途径,而且扩大了焦化蜡油的应用范围。  相似文献   

7.
The degradation of high density polyethylene (HDPE), polypropylene (PP) and their mixtures was carried out in supercritical acetone under the reaction temperature ranging from 450 ‡C to 470 ‡C, pressure ranging from 60 atm to 100 atm and reaction duration time as 60 min. The yields of gas, oil and wax components and the compositions and distributions of liquid-like products were measured by means of gas chromatography and gas chromatography/mass spectrometer. In every run, the reaction was completed in 30 min after reaching the prescribed temperature. The yields of oil and gas degraded from PP were not greatly influenced by the temperature, whereas in HDPE, the yields of oil decreased and that of gas increased, respectively, with rising temperature. The yields of oil from HDPE and PP increased with increasing pressure up to 7 atm and the values under higher pressure remained almost constant, i.e., 88% for HDPE and 96% for PP. Correspondingly, the yields of wax from HDPE and PP decreased with increasing pressure below 75 atm and above the value they remained almost constant, especially zero with PP. Generally, the degradation performance was influenced by the temperature rather than applied pressure. For the degradation of mixtures of HDPE and PP, with increasing PP composition, the yield of oil increased, whereas that of wax decreased, and above 80% of PP composition, it decreased to zero. For example, the yields of oil, wax and gas from a 52 wt% HDPE-48 wt% PP mixture, amounted to 90 wt%, 1 wt% and 9 wt%, respectively. The yield of wax decreased with increasing PP percentage.  相似文献   

8.
Qian Zhou  Li Zheng 《Fuel》2004,83(13):1727-1732
A alumina-magnesium composite oxide catalyst (Al-Mg) was synthesized for catalytic degradation of poly vinyl chloride (PVC) containing polymer mixtures, i.e. polypropylene (PP)/PVC, low-density polyethylene (LDPE)/PVC, polystyrene (PS)/PVC, and LDPE/PP/PS/PVC. In the catalytic degradations the Al-Mg composite oxide catalyst accelerated the rate of polymer degradation and lowered the carbon distribution of liquid products. In addition, it showed good effect on the fixation of evolved HCl and greatly decreased the chlorine content in the oil. These results suggested that the Al-Mg composite oxide catalyst can be effectively used for catalytic degradation and dechlorination of PVC-containing mixed plastics.  相似文献   

9.
Catalytic degradation of high-density polyethylene (HDPE) was carried out under nitrogen using a laboratory fluidised bed reactor operating at 360 °C with catalyst to polymer feed ratio of 2:1 and at 450 °C with catalyst to polymer feed ratio of 6:1 under atmospheric pressure. The catalysts used in this study were ZSM-5, US-Y, ASA, fresh FCC (fluid catalytic cracking) commercial catalyst (Cat-A) and equilibrium FCC catalysts with different levels of metal poisoning were studied. The initial results for polymer degradation at 360 °C (catalyst to polymer ratio of 2:1) in a fluidised bed reactor in terms of the yield of volatile hydrocarbon products were: model catalysts>commercial FCC catalyst>E-Cats. However, when the process conditions more closely resembled to FCC conditions, the fresh commercial FCC catalyst was more favourable in terms of the yield of volatile hydrocarbon products. The degradation of HDPE over E-Cats although reduced was similar to ASA in product selectivity and yield, and the level of metal contamination did not affect the product stream generated. A simple economic evaluation of polymer recycling process is reported showing that a catalytic system based on E-Cats appears comparable in costs to a commercial thermal cracking plant.  相似文献   

10.
The compatibilization of mixtures of polyolefins or of polyolefins with polystyrene using either liquid polybutadiene (l-PB)/organic peroxide or styrene-butadiene-styrene (SBS) block copolymers was investigated. Tensile impact strength was chosen as a measure of compatibility. Binary blends LDPE/high-impact polystyrene (HIPS) and LDPE/poly(propylene) (PP) as well as LDPE/HDPE/PP/HIPS blends were prepared by blending in the chamber of a Brabender Plasticorder. Composition of the blends corresponds to real commingled plastic waste. It was found that l-PB-based compatibilizer enhanced the impact strength of LDPE/HIPS blends with LDPE contents higher than 60 wt.-% only. Also SBS copolymer enhanced the impact strength of LDPE/PP blends with LDPE contents higher than 40 wt.-%. Both the compatibilizers substantially increased the toughness of LDPE/HDPE/PP/HIPS blends with composition similar to the municipal plastic waste.  相似文献   

11.
A mixture of postconsumer polyolefin waste (PE/PP) was pyrolyzed over cracking catalysts using a fluidizing reaction system similar to the fluid catalytic cracking (FCC) process operating isothermally at ambient pressure. Experiments carried out with various catalysts gave good yields of valuable hydrocarbons with differing selectivity in the final products dependent on reaction conditions. Greater product selectivity was observed with a commercial FCC equilibrium catalyst (Ecat‐F1) with more than 50 wt % olefins products in the C3‐C6 range. A kinetic model based on a lumping reaction scheme for the observed products and catalyst coking deactivations has been investigated. The model gave a good representation of experiment results. Moreover, this model provides the benefits of lumping product selectivity, in each reaction step, in relation to the performance of the FCC equilibrium catalyst used, the effect of reaction temperature, and the particle size selected. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
采用热重分析仪(TG)考察了高密度聚乙烯(HDPE)/低密度聚乙烯(LDPE)复合交联物的热稳定性。结果显示,HDPE/LDPE复合交联物的热稳定性低于HDPE/LDPE共混物。FTIR分析证实,交联反应使聚乙烯(PE)的支化程度提高,取代基的位阻效应在一定程度上影响了PE的热降解过程。在N2气氛下,HDPE/LDPE共混物及交联物的热降解过程均为一步降解反应。Kissinger法求解HDPE/LDPE共混物及其复合交联物的热降解活化能发现,LDPE质量分数在20%~30%之间变化时,HDPE/LDPE交联物的热降解过程对温度的敏感性发生了突变。  相似文献   

13.
Copyrolysis of 10 mass% solutions (oils/waxes from individual or mixed polymers with heavy naphtha) is a route for treatment of plastic waste. Linear low-density polyethylene (LLDPE), mixture of high-density polyethylene/low-density polyethylene/linear low-density polyethylene/polypropylene (HDPE/LDPE/LLDPE/PP = 1:1:1:1mass) and linear low-density polyethylene/low-density polyethylene/polypropylene/high-density polyethylene/polyvinyl chloride/polyethylene terepthalate/polystyrene (LLDPE/LDPE/PP/HDPE/PVC/PET/PS = 1:1:2:2:0.05:0.05:0.156 mass) were converted to oils/waxes, gases and solid residues by thermal decomposition in batch reactor at 450 °C. Oils/waxes were dissolved in virgin heavy naphtha to create the feedstock. The influence of residence time from 0.08 to 0.51 s at temperatures 780 °C and 820 °C on product distribution during the copyrolysis was studied. The yields obtained from gaseous and liquid products of solutions are compared to the yields obtained from virgin heavy naphtha. It was studied how addition of the oil/wax influences formation of C2 and C3 hydrocarbons (mainly ethene and propene) and aromatics in comparison to the virgin heavy naphtha. The ethene and propene yields from copyrolysis of solutions are comparable or higher than from virgin heavy naphtha. Copyrolysis of solution LLDPE/LDPE/PP/HDPE/PVC/PET/PS gives the maximum yields of propene from all studied oils/waxes. The result suggests that oils/waxes from polymers are suitable feedstocks for copyrolysis with virgin heavy naphtha.  相似文献   

14.
O-alkylation reaction of hydroquinone with excess methanol was performed by using alkali metal ion-exchanged zeolite catalysts in a slurry type reactor to substitute the solid zeolite catalysts for the homogeneous liquid phase catalysts. This was also done to produce selectively mono-alkylated 4-methoxyphenol, a valuable intermediate for the perfume, flavor, food and photo industries. The effects of the basicity of various zeolites and reaction conditions such as temperature, reaction time and the amount of catalyst on the catalytic activity and selectivity were tested to maximize the yield of 4-methoxyphenol. Thus far, 84% selectivity at 95% conversion of hydroquinone was obtained at the optimum reaction conditions (240 ‡C, reaction with 0.6 g catalyst for 16 h), which was thought to result from the strong basic property and shape selectivity of the Cs ion-exchanged NaX zeolite.  相似文献   

15.
The effects of reaction temperature, mass ratio of catalyst to oil, space velocity, and mass ratio of water to oil on the product distribution, the yields of light olefins (light olefins including ethylene, propylene and butylene) and the composition of the fluid catalytic cracking (FCC) gasoline upgraded over the self-made catalyst GL in a confined fluidized bed reactor were investigated. The experimental results showed that FCC gasoline was obviously reformulated under appropriate reaction conditions. The olefins (olefins with C atom number above 4) content of FCC gasoline was markedly reduced, and the aromatics content and octane number were increased. The upgraded gasoline met the new standard of gasoline, and meanwhile, higher yields of light olefins were obtained. Furthermore, higher reaction temperature, higher mass ratio of catalyst to oil, higher mass ratio of water to oil, and lower space velocity were found to be beneficial to FCC gasoline reformulation and light olefins production. __________ Translated from Chemical Reaction Engineering and Technology, 2006, 22(6): 532–538 [译自: 化学反应工程与工艺]  相似文献   

16.
The pyrolysis of pure biomass, high density polyethylene (HDPE), polypropylene (PP) and polyethylene terephthalate (PET), plastic mixtures [HDPE+PP+PET (1: 1: 1)], and biomass/plastic mixture (9: 1, 3: 1, 1: 1, 1: 3 and 1: 9) were investigated by using a thermogravimetric analyzer under a heating rate at 10 °C/min from room temperature to 800 °C. Paper was selected as the biomass sample. Results obtained from this comprehensive investigation indicated that biomass was decomposed mainly in the temperature range of 290–420 °C, whereas thermal degradation temperature of plastic mixture is 390–550 °C. The percentage weight loss difference (W) between experimental and theoretical ones was calculated, which reached a significantly high value of (−)15 to (−)50% at around 450 °C in various blend materials. These thermogravimetric results indicate the presence of significant interaction and synergistic effect between biomass and plastic mixtures during their co-pyrolysis at the high temperature region. With increase in the amount of plastic mixture in blend material, the char production has diminished at final pyrolysis temperature range. Additionally, a kinetic analysis was performed to fit with TGA data, the entire pyrolysis processes being considered as one or two consecutive first order reactions.  相似文献   

17.
惠贺龙  李松庚  宋文立 《化工学报》2017,68(10):3832-3840
采用两段式固定床对比研究了纤维素与高密度聚乙烯(HDPE)的单独物料催化热解、混合物催化热解和分段催化热解,对热解产物分布、目标产物产率及选择性以及催化剂积炭量等参数进行考察,拟从模型化合物水平探索生物质与塑料催化热解制芳烃过程强化协同作用的可能性。结果表明,纤维素与HDPE的共催化热解(混合和分段催化热解)对芳烃的形成具有协同作用,且分段催化热解较混合催化热解表现出更显著的协同作用,可获得更高的芳烃产率及选择性,提高纤维素热解转化率并降低催化剂的积炭,其协同作用符合"双烯合成"反应理论。并结合HDPE催化热解验证实验对分段催化热解制芳烃过程协同作用的强化机理进行阐述。  相似文献   

18.
The catalytic degradation of polypropylene has been investigated in this study. Solid acid catalysts, such as silica-alumina and zeolites (HZSM-5, natural zeolite, Mordenite etc.), were screened for polypropylene degradation in the range of 350-450‡C. The degradation products of polypropylene, especially a liquid fraction, formed over solid acid catalysts, were analyzed by GC/MS. The degradation products are distributed in a narrow range of carbon number compared with those obtained by thermal degradation. The liquid fraction contained large amounts of iso-paraffins and aromatics as are present in the gasoline traction of petroleum. The natural zeolite catalyst (clinoptilolite structure, occurring in Youngil area of Korea) was an efficient catalyst for the polypropylene degradation. The acidity and characteristic pore structure of this zeolite appear to be responsible for the good performance. The effects of temperature and reaction tune on the product distribution have also been studied in this work.  相似文献   

19.
Characteristics of LDPE pyrolysis   总被引:6,自引:0,他引:6  
Pyrolysis of low-density polyethylene (LDPE) was studied in order to relieve environmental pollution and recover the monomer or fuel. LDPE was thermally decomposed with and without catalyst. First, efficiency of oil production was analyzed according to the variation of reaction conditions such as reaction temperature, types of additives and catalyst, and contacting method. In non-catalytic LDPE pyrolysis, isothermal reaction was almost similar to non-isothermal reaction. Light oil was produced with low reaction temperature (430 °C) in the isothermal reaction, but low heating rate caused light oil production in the non-isothermal reaction. When pyrolyzed polyethylene (PE oil) was applied as an additive, no significant effect showed in the isothermal reaction. In catalytic LDPE pyrolysis (10%NiO/S-A) with additives, efficiency greatly increased especially with polystyrene (PS) addition. It was also found that the molecular weight distribution of product oil could be controlled by applying different additives. When a catalytic reactor was used, the amount of the low molecular weight compound increased as flow rate of thermally decomposed gas was lowered. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

20.
采用小型提升管催化裂化试验装置评价研制的DOC-Ⅰ降烯烃催化剂的催化裂化反应性能。结果表明,在反应温度500 ℃、剂油质量比6和停留时间1.99 s条件下,DOC-Ⅰ催化剂上原料油的转化率达75.01%,较参比催化剂提高1.79个百分点,相应的液化气产率降低0.28个百分点,汽油产率增加2.9个百分点,烯烃含量下降5.21个百分点,异构烷烃和芳烃含量明显增加,产品分布有效改善。表明研制的DOC-Ⅰ催化剂具有较好的催化裂化性能和降烯烃能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号