首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Non-catalytic and catalytic degradation of waste plastics (high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS)) using spent fluid catalytic cracking (FCC) catalyst into liquid product were comparatively studied with a stirred semi-batch reactor at 400 ‡C, under nitrogen stream. Liquid product characteristics were described by cumulative distribution as a function of lapse time of reaction, paraffin, olefin, naphthene and aromatic (PONA) composition, and also carbon number distribution on plastic type of reactant. For degradation of waste PE with relatively high degradation temperature, the effect of adding spent FCC catalyst greatly appeared on cumulative distribution of liquid product with a reaction lapse time, whereas those for waste PP and PS with low degradation temperature showed a similar trend in both non-catalytic and catalytic degradation at 400 ‡C. In PONA and carbon number distribution of liquid product, the characteristics of waste PS that was mainly degraded by end chain scission mechanism were not much altered in presence of spent FCC catalyst. However, waste polyolefinic polymer that was degraded by a random chain scission mechanism significantly differed on PONA and carbon number distribution of liquid product with or without spent FCC catalyst. The addition of spent FCC catalyst in degradation of polyolefinic polymer, which economically has a benefit in utilization of waste catalyst, significantly improved the light olefin product by its high cracking ability and also the aromatic product by cyclization of olefin as shape selectivity in micropore of catalyst.  相似文献   

2.
Thermal and catalytic degradation using spent fluid catalytic cracking (FCC) catalyst of waste high-density polyethylene (HDPE) at 430 °C into fuel oil were carried out with a stirred semi-batch operation. The product yield and the recovery amount, molecular weight distribution and paraffin, olefin, naphthene and aromatic (PONA) distribution of liquid product by catalytic degradation using spent FCC catalyst were compared with those by thermal degradation. The catalytic degradation had lower degradation temperature, faster liquid product rate and more olefin products as well as shorter molecular weight distributions of gasoline range in the liquid product than thermal degradation. These results confirmed that the catalytic degradation using spent FCC catalyst could be a better alternative method to solve a major environmental problem of waste plastics. This paper is dedicated to Dr. Youn Yong Lee on the occasion of his retirement from Korea Institute of Science and Technology.  相似文献   

3.
Fluidized catalytic cracking (FCC) is an important link in heavy oil processing. Industrial FCC catalyst which mainly consists of molecular sieves, substrates and adhesives is used in large quantities every year. Spent FCC catalyst is one kind of hazardous solid waste that is hard to handle. In this paper, we used a spent FCC catalyst as a desulfurization adsorbent, and show that it displays advanced desulfurization property. Furthermore, regeneration experiment showed that calcination was an effective method to remove the sulfides adsorbed in spent FCC catalyst, after four cycles it still owned a high sulfur adsorption ability. The results of metal impregnation indicated that the high ability to remove sulfur in LPG was due to those metals deposited on WC. The sulfur removal further increased by calcination of the spent catalyst since carbon deposition on the catalyst surface which blocked the active sites was minimized by calcination, thus leading an increase in the number of active sites available.  相似文献   

4.
A mixture of postconsumer polyolefin waste (PE/PP) was pyrolyzed over cracking catalysts using a fluidizing reaction system similar to the fluid catalytic cracking (FCC) process operating isothermally at ambient pressure. Experiments carried out with various catalysts gave good yields of valuable hydrocarbons with differing selectivity in the final products dependent on reaction conditions. Greater product selectivity was observed with a commercial FCC equilibrium catalyst (Ecat‐F1) with more than 50 wt % olefins products in the C3‐C6 range. A kinetic model based on a lumping reaction scheme for the observed products and catalyst coking deactivations has been investigated. The model gave a good representation of experiment results. Moreover, this model provides the benefits of lumping product selectivity, in each reaction step, in relation to the performance of the FCC equilibrium catalyst used, the effect of reaction temperature, and the particle size selected. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A commingled post-consumer polymer (CPW#1) was pyrolysed over spent fluid catalytic cracking (FCC) commercial catalyst (ECat-1) using a laboratory fluidised-bed reactor operating isothermally at ambient pressure. The influence of reaction conditions including catalyst, temperature, ratios of commingled polymer to catalyst feed and flow rates of fluidising gas was examined. The conversion for spent FCC commercial catalyst (82.7 wt%) gave much higher yield than silicate (only 14.2 wt%) and the highest yield (nearly 87 wt%) was obtained for ZSM-5. Greater product selectivity was observed with ECat-1 as a recycled catalyst with about 56 wt% olefins products in the C3–C7 range. The selectivity could be further influenced by changes in reaction conditions. Valuable hydrocarbons of olefins and iso-olefins were produced by low temperatures and short contact times used in this study. It is also demonstrated that the use of spent FCC commercial catalyst and under appropriate reaction conditions can have the ability to control both the product yield and product distribution from polymer degradation, potentially leading to a cheaper process with more valuable products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号