首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以番石榴为原料,采用水溶剂提取法提取其中的多糖。利用响应面法对提取工艺进行优化,得到最佳提取条件为提取温度67℃、液料比49∶1 (mL/g)、提取时间59 min、提取次数2次。在此条件下,实测番石榴多糖的平均提取率为7.03%,与回归模型预测值7.07%几乎一致。粗多糖经DEAE-52纤维素柱层析纯化获得多糖P-1和多糖P-2。体外抗氧化活性测试结果表明,2种多糖对各种自由基均具有较好的清除效果,并且清除能力随多糖浓度的升高而增强,其中多糖P-1的清除能力强于多糖P-2。  相似文献   

2.
为加快辣木籽多糖提取速率,以辣木籽为原料,采用内部沸腾法提取其中的多糖。采用单因素实验和响应面实验对内部沸腾法提取辣木籽多糖的工艺条件进行优化,通过自由基清除活性考察其抗氧化活性。结果表明:最优提取工艺条件为解吸剂乙醇体积分数20%、蒸馏水提取温度74℃、提取时间5 min、料液比1∶27,在此条件下辣木籽多糖得率可达12.5%;质量浓度为5.0 mg/mL的辣木籽多糖对羟自由基的清除率为91.1%,质量浓度为1.0 mg/mL的辣木籽多糖对DPPH自由基的清除率为38%;质量浓度为5.0 mg/mL的辣木籽多糖对超氧阴离子自由基的清除率为59.8%。综上,辣木籽多糖具有一定的抗氧化活性。  相似文献   

3.
朱杰 《中国油脂》2021,46(10):127-131
以亚麻荠籽饼为原料,以多糖得率为指标,在单因素试验基础上采用响应面试验对恒温搅拌提取亚麻荠籽多糖工艺进行优化,并探讨亚麻荠籽粗多糖提取物的体外抗氧化活性。结果表明,恒温搅拌提取亚麻荠籽多糖的最佳工艺条件为提取温度90 ℃、料液比1∶ 18、提取时间85 min、搅拌速度200 r/min,在此条件下提取2次,亚麻荠籽多糖得率为1.71%。亚麻荠籽粗多糖提取物对DPPH自由基与羟自由基均呈现出一定的清除能力,对羟自由基的清除能力优于DPPH自由基。研究结果为亚麻荠籽多糖的提取以及应用提供了理论依据。  相似文献   

4.
采用微波辅助提取油茶籽粕中的茶籽多糖。在单因素实验的基础上,利用正交实验优化茶籽多糖提取条件。并对茶籽多糖的体外抗氧化活性进行了研究。结果表明,茶籽多糖最佳提取工艺条件为:微波功率800 W,微波时间6.5 min,料液比1∶60,提取时间2 h,提取温度100℃。在最佳工艺条件下,茶籽多糖得率为(7.61±0.5)%。茶籽多糖对羟自由基、DPPH自由基和亚硝酸盐都呈现出一定的清除能力,但清除超氧阴离子自由基能力和还原能力较弱。  相似文献   

5.
以脱脂后的漆树籽粕为原料,采用热回流提取漆树籽粕多糖,通过单因素实验和正交实验优化该方法的最佳工艺条件,并进一步研究漆树籽粕多糖对羟自由基和ABTS+自由基的清除能力。结果表明:最佳工艺条件为提取时间2.5 h,料液比1∶20(g∶m L),提取温度80℃和提取次数2次,此时籽粕多糖的得率为1.561%。漆树籽粕多糖对清除羟自由基和ABTS+自由基的IC_(50)分别为8.515 mg·m L~(-1)和7.03 mg·m L~(-1),当漆树籽粕多糖的浓度为25 mg·m L~(-1)时,对羟自由基的清除率达到61.5%,当浓度为10 mg·m L-1时,对ABTS+自由基的清除率达到58.4%。体外抗氧化实验表明漆树籽粕多糖抗氧化活性作用明显。  相似文献   

6.
目的:研究山豆根茎多糖的微波预处理-超声波提取工艺及其生物活性。方法:以多糖得率和多糖纯度的总评归一值为评价指标,采用正交设计优选山豆根茎多糖的微波预处理-超声波提取工艺,并对其稳定性、抗氧化活性和清除亚硝酸盐活性三种生物活性进行研究。结果:最佳提取工艺条件为:解析剂比1∶5(g/m L),微波时间30 s,料液比1∶25(g/m L),超声功率140 W,提取时间20 min,该工艺条件下,多糖得率为3.27%,多糖纯度为29.49%,提取效果优于热水浸提法和超声波提取法。多糖稳定性研究表明粗多糖在温度40~70℃、Ca~(2+)或柠檬酸中较稳定,但在温度高于70℃、H_2O_2、Na_2SO_3、VC、Na~+、Al~(3+)、Cu~(2+)或Fe~(3+)的条件下稳定性较差。体外抗氧化活性研究表明粗多糖具有一定的抗氧化活性,当浓度为1.96 mg/m L时,微波预处理-超声波提取法粗多糖对·OH和O-2·的清除率分别可达78.14%和71.16%;亚硝酸盐清除研究表明粗多糖具有良好的清除亚硝酸盐活性,当添加量为20 m L(或19.60 mg)时,清除率可达82.94%,清除效果与0.32 mg VC相当;相同浓度下,微波预处理-超声波提取法所提取的粗多糖对O-2·和亚硝酸盐的清除活性与超声提取法相当,且对·OH的清除活性优于超声提取法。结论:山豆根茎中富含多糖类物质,具有良好的抗氧化活性和清除亚硝酸盐活性,粗多糖稳定性较差,建议低温避光保存。  相似文献   

7.
微波辅助提取牡丹籽粕多糖工艺优化及其体外抗氧化活性   总被引:1,自引:0,他引:1  
研究牡丹籽粕多糖(PA)提取工艺及其抗氧化活性。采用微波辅助法提取超临界萃取牡丹籽油后的籽粕中的多糖,探讨微波处理时间、功率、粒度和料液比对多糖提取率的影响,通过正交实验优化提取工艺,用3,5-二硝基水杨酸盐法定量分析多糖含量,用DPPH和脂质过氧化法分析牡丹籽粕多糖的抗氧化活性。结果表明,各因素对多糖提取得率的影响大小依次为固液比>微波处理功率>籽粕粒度>微波处理时间,牡丹籽粕多糖的最佳提取工艺为:微波功率480 W,提取时间8 min,粒度120目,固液比1:25 (w/v),此条件多糖得率为9.21%。牡丹籽粕多糖溶液能有效的清除DPPH自由基,抑制卵黄组织匀浆的脂质过氧化作用。体外实验牡丹籽粕多糖具有一定程度的抗氧化能力,可成为一种新的天然抗氧化剂。本研究为牡丹籽粕的综合利用提供了理论依据与参考。  相似文献   

8.
目的:研究白及多糖的超声-微波协同提取工艺优化及其抗氧化活性。方法:以多糖得率为考察指标,通过单因素实验对料液比、浸泡时间、微波功率和协同提取时间4个影响因素进行考察,采用正交实验设计对超声波-微波协同提取白及多糖的工艺条件进行优化,并研究白及多糖对羟基自由基(·OH)、超氧阴离子(O_2~-·)和1,1-二苯基-2-苦肼基自由基(DPPH·)的清除率以评价其体外抗氧化活性。结果:最佳提取工艺条件为:液料比20∶1 m L/g,浸泡时间6 min,微波功率200 W,协同提取时间5 min,该工艺条件下多糖得率达6.98%±0.19%。单独超声波提取法和单独微波提取法的多糖得率仅为超声-微波协同提取法的46.28%和87.96%,表明超声-微波协同提取优于单独超声波提取和单独微波提取。抗氧化活性研究表明在实验范围内,白及多糖对O-2·无明显清除作用,但对·OH和DPPH·具有明显的清除作用,采用超声-微波协同提取法提取的白及多糖较微波提取法具有更高的·OH和DPPH·清除活性,当多糖浓度为0.5 mg/m L时,对·OH和DPPH·清除率分别为92.82%和74.21%。结论:超声-微波协同提取具有省时高效的特点,特别适用于多糖类物质的提取。  相似文献   

9.
采用超声波辅助纤维素酶提取牡丹籽饼中多糖。在单因素试验的基础上,采用PB设计对影响多糖提取量的9个因素(pH、加酶量、酶解时间、酶解温度、超声时间、超声功率、超声温度、液料比、粒度)进行显著性分析。通过BBD响应面法优化最佳提取工艺条件。采用清除DPPH自由基活性评价牡丹籽饼中多糖的抗氧化能力。结果表明,牡丹籽饼中多糖的最佳提取工艺条件为:加酶量0.45%,酶解时间60 min,酶解温度45℃,pH 4.5,超声时间19 min,超声功率300 W,超声温度40℃,液料比19∶1,粒度60目。在最佳工艺条件下,牡丹籽饼中多糖提取量为196.87 mg/g。牡丹籽多糖具有一定DPPH自由基清除能力,但弱于V_C,其IC_(50)值为31.19μg/m L。  相似文献   

10.
不同提取方法对米邦塔仙人掌粗多糖体外抗氧化性的影响   总被引:1,自引:0,他引:1  
目的:研究不同提取方法对米邦塔仙人掌粗多糖体外抗氧化活性的影响。方法:采用热水提法、酶法和超声波法分别提取米邦塔仙人掌粗多糖,苯酚-硫酸法测定粗多糖纯度,以抗肝组织自发性脂质过氧化能力、清除羟基自由基能力、清除超氧阴离子能力、清除1,1-二苯基-2-苦苯肼自由基能力、总还原能力、总抗氧化能力6种方法作为体外抗氧化能力评价指标。结果:酶法提取的粗多糖得率最高,为10.14%;超声波法提取的粗多糖纯度最高,为47.62%;酶法和超声波法提取的粗多糖各项体外抗氧化指标的活性均高于热水提法。结论:米邦塔仙人掌粗多糖的体外抗氧化活性强弱与粗多糖的提取方法有关,酶法和超声波法提取的粗多糖具有较好的抗氧化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号