共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 优选双藤清痹中挥发油 β-环糊精 (β -CD)包合物的制备工艺。 方法 采用正交试验 ,以包合物收率及挥发油包封率为指标优选包合工艺 ,应用TLC对包合物进行质量考察。结果 优选包合物最佳制备工艺为 :β -CD与干姜油投料比为 8:1,加 3倍量水 ,研磨时间 12 0min。结论 β -CD包合后挥发油粉末化并使其稳定性增强 ,并且包合前后成分不发生变化。 相似文献
2.
3.
4.
5.
6.
7.
野黄桂叶挥发油包合物的制备及评价 总被引:1,自引:0,他引:1
以β-环糊精为壁材,以包埋率为检测指标,以单因素试验结果为基础进行正交试验,确定野黄桂叶挥发油最佳包合工艺;同时通过薄层色谱法(TLC)、紫外分光光度法(UV)、差示扫描量热法(DSC)以及显微成像法对包合物进行评价。试验结果表明,野黄桂叶挥发油包合物最佳制备工艺条件为:超声波处理时间8min,芯材与壁材质量比18,超声波功率150W,β-环糊精与水质量比19,超声温度40℃。经TLC、UV、DSC以及显微成像法表征分析后,结果显示挥发油与β-环糊精已形成包合物,且包合物性质稳定,颗粒均匀,粉末形态好。 相似文献
8.
9.
10.
库尔班江.巴拉提 《食品安全质量检测学报》2016,7(6):2426-2434
目的筛选槲皮素-β-环糊精包合物及槲皮素-羟丙基-β-环糊精包合物的最佳制备方法及工艺条件,并进行包合物的鉴定及溶解度测定。方法采用溶液搅拌法、超声波法和研磨法比较包合物的制备效果;溶液搅拌法的包合物制备工艺以包合得率为指标,分别考察投料摩尔比、包合温度、包合时间及溶液p H值对包合物得率的影响,并通过正交试验优化;采用薄层鉴别法及红外光谱法对包合物进行鉴定。结果通过比较包合物得率,采用溶液搅拌法制备槲皮素-β-CD和槲皮素-HP-β-CD包合物更好;包合物制备的最佳工艺条件为:投料摩尔比为1:1、制备温度为60℃、制备时间为2 h、溶液p H值为7;在此条件下制备槲皮素-β-CD包合物的平均包合得率为66.22%,制备槲皮素-HP-β-CD包合物平均得率可达71.49%;槲皮素-β-CD包合物溶解度为26.94μg/mL,槲皮素-HP-β-CD包合物在水中的溶解度可增加到2224.21μg/mL。槲皮素在0.8~6.4μg/mL浓度范围内呈良好的线性关系(r=0.9999)。结论溶液搅拌法使槲皮素与环糊精衍生物形成包合物,且明显增加了槲皮素在水中的溶解性,有利于药物在体内的吸收并提高了生物利用率。 相似文献
11.
为改善乳酸链球菌素(Nisin)的水溶性,采用饱和水溶液法,用β-环糊精(β-cyclodextrinβ-CD)对其进行包合。通过正交实验得到其最优条件为pH=3,摩尔比Nisin∶β-CD=1∶2,包合温度40℃,此时Nisin最优包合率达到34.46%。傅里叶变换红外光谱分析与差式扫描量热分析表明,Nisin和β-CD形成包合物,结构发生变化。在抑菌实验中,Nisin/β-CD包合物对金黄色葡萄球菌和枯草芽孢杆菌的抑菌活性与Nisin相比无显著性差异。 相似文献
12.
目的 采用高压液相色谱法对桂枝中桂皮醛含量进行测定。方法 采用ZORBAX Eclipse XDB-C18色谱柱, 乙腈:水(32:68)为流动相, 检测波长为290 nm。结果 在检测范围0.010~0.252 μg/mL(R2=0.9996)线性良好, 平均回收率为101.17%, RSD为1.60%, 依照该种方法测定6个不同批次的桂枝中桂皮醛含量。结论 该种方法在建立的检测范围内符合中药材及相关保健品的检测要求。 相似文献
13.
采用饱和水溶液法、超声法、研磨法对梅片树叶挥发油进行包合,以综合评分为指标,筛选最佳包合方法。采用L9(34)正交试验设计,考察了投料比、包合时间以及包合温度对包合物的得率和包合率的影响,筛选出饱和水溶液法制备包合物的最佳工艺参数。结果表明,制备包合物的最佳工艺条件为:梅片树叶挥发油与β-环糊精投料比为1:8,包合温度为30℃,包合时间为50 min,在此条件下,得到包合物的得率和包合率分别是75.64%和88.42%,说明本工艺具有良好的得率和包合率,这对于开发梅片树叶挥发油的药用价值提供了研究思路和理论基础。 相似文献
14.
15.
16.
17.
应用均匀设计法,选取羟丙基-β-环糊精浓度、主客比、反应温度和搅拌速度4个因素对虾青素/羟丙基-β-环糊精包合物制备工艺进行了优化。得到的最佳工艺参数是:羟丙基-β-环糊精浓度3.00mol/L,主客体摩尔比60,反应温度20℃,搅拌速度1000r/min,此时预测的包合率是54.0%(±5.91%),在此条件下实际测定的包合率为51.6%,优化工艺切实可靠。 相似文献
18.
目的:考察高速剪切结合冷冻干燥法制备薄荷挥发油的β-环糊精(β-cyclodextrin,β-CD)包合物的最佳工艺。方法:对比冷冻干燥与真空干燥,高速剪切与搅拌法对包合工艺的影响;在单因素实验基础上,以β-CD与挥发油的比例、包合温度和β-CD的质量分数为影响因素,以含油率和包合率的综合评分为评价指标,考察BoxBehnken响应面法优化的包合工艺;采用高效液相色谱(high performance liquid chromatography,HPLC)测包合物中的胡薄荷酮含量;傅里叶变换红外光谱(fouriertransforminfrared spectroscopy,FTIR)对包合物进行表征。结果:冷冻干燥法制备的包合物收率更高,平均收率为97.6%。高速剪切法制备的含油率和包合率较高,与搅拌法相比分别高出约3%和19%;包合物的最佳制备条件为:β-CD与挥发油比例为9:1(g/mL),包合温度为55℃,β-CD的质量分数为17%。在此条件下,挥发油含油率为10.9%,挥发油包合率为97.6%,综合评分为99.7,RSD值为1.59%,优化的工艺稳定可行;通过HPLC测得包合... 相似文献
19.
20.
目的:制备小茴香挥发油β-环糊精包合物并对其进行结构表征及稳定性研究。方法:以小茴香挥发油包合率、包合产率、包合物中反式茴香脑的含量建立综合评分指标,探究小茴香挥发油与β-环糊精比例、包合温度、包合时间对其的影响,设计正交试验优化制备工艺。通过扫描电镜(SEM)法、薄层色谱(TLC)法、傅立叶红外光谱(IR)法、差示扫描量热(DSC)法进行表征。最后采用光照、高温、高湿试验考察包合物稳定性。结果:由饱和水溶液法得到最佳条件为挥发油与β-环糊精比例1∶8 (mL/g),包合温度40℃,包合时间60 min,该条件下小茴香挥发油包合物的包合率为96.90%,包合产率为93.61%,反式茴香脑含量为6.81%,综合评分为99.68;所得包合物为白色粉末,质地疏松,包合效果较好。经扫描电镜法、薄层色谱法、傅立叶红外光谱法、差示扫描量热法表征发现,包合物已经形成。其在光照(4 000 lx)5 d内稳定性良好,高温(60℃)下包合物中挥发性成分容易流失,在相对湿度大于75%时会潮解结块,在光照时间较长,高温高湿的条件下,包合率和反式茴香脑含量明显降低。结论:最佳包合工艺的包合率、包合产率较高,工... 相似文献