首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron and Phosphorus doped oxides are important films in the processing of IC' s, both as a planarization dielectric and as a passivation. The accurate analysis of dopants in these films is also of great importance to the analytical chemist. In this paper, Boron and Phosphorus are detrmined by ICP-MS after the films dissolved by HF, HNO3. The errors of the results and those gotten by ICP-AES from Balazs Lab are less than 5%.  相似文献   

2.
Majority of non-Newtonian fluids are pseudoplastic with shear-thinning property, which means that the viscosity will be different in different parts of the stirred tank. In such mixing process, it is difficult to predict accurately the power consumption and mean shear rate for designing novel impeller. Metzner-Otto method is a widely accepted method to solve these questions in mixing non-Newtonian fluids. As a result, Metzner-Otto constant will become a key factor to achieve an optimum way of economical mixing. In this paper, taking glycerine and xanthan gum solutions as research system, the power consumption, stirred by the impeller composed of perturbed six-bent-bladed turbine (6PBT) with differently geometrical characteristics in a cylindrical vessel, is studied by means of computational fluid dynamics (CFD). The flow is modeled as laminar and a multiple reference frame (MRF) approach is used to solve the discretized equations of motion. In order to determine the capability of CFD to forecast the flow process, the torque test experiment is used to measure the glycerine solution power consumption. The theological properties of the xanthan gum solutions are determined by a Brookfleld rheometer. It is observed that the power consumption predicted by numerical simulation agrees well with those measured using torque experiment method in stirring glycerine solution, which validate the numerical model. Metzner-Otto constant is almost not correlated with the flow behavior index of pseudoplastic fluids. This paper establishes the complete correlations of power constant and Metzner-Otto constant with impeller geometrical characteristics through linear regression analysis, which provides the valuable instructions and references for accurately predicting the power consumption and mean shear rate of pseudoplastic fluids in laminar flow, comparatively.  相似文献   

3.
MORPHOLOGY CONTROL OF ULTRAFINE CeO2 AND ITS POLISHING EFFICACY   总被引:1,自引:0,他引:1  
Homogenous precipitation and subsequent calcination has been used to synthesize ultrafine ceria from cerium nitrate and urea solution. The ceria calcined from the precursor inherit the size and morphology of it. The size and morphology of the precursor are closely related to the preparation process. The morphology, size and distribution of the precursor could be tailored by changing the reaction condition and the ageing time. Monodispersed 200 run sized spherical particles is prepared by this method. The powder is used in the chemical-mechanical polishing of Si wafer. The average surface roughness of the polished Si wafer is 0.171 nm measured by AFM.  相似文献   

4.
The existence of inclusion influences the properties of aluminum alloy castings,from which the castings will face scrapping under severe condition.Great efforts on the inclusions in aluminum alloy were made and many inclusion assessment methods were put forward.However,most of the current methods are characterized by time consuming and expensive equipment cost,which limits the application in aluminum industry.Since the aluminum properties are sensitive to the inclusion,this paper tries to establish a new kind of inclusion assessment method.The inclusions were introduced to aluminum melts by adding aluminum scraps.The samples with different inclusion contents were prepared.The microstructure contained inclusions was observed.The inclusion was automatically identified with an image analyzer by setting different grey threshold value,and the inclusion content was obtained.The image analysis shows that inclusions wreck the continuity of the alloy matrix seriously,and the inclusion area percentage increases with the increasing of aluminum scraps.The high and low polarization measurements were conducted in 3.5 wt% NaCl aqueous solution at the temperature of 25 ℃.The electrochemical parameters of the testing materials,such as corrosion potential E k,corrosion current density I k and the linear polarization resistance R p,were obtained.The polarization measurement results show that the linear polarization resistances decrease,the corrosion potentials move towards more negative direction,and the corrosion current densities increase with the increasing of inclusion content.The theoretical analysis of the inclusion content and the corrosion current density was performed.The existence of inclusions makes the microstructure form corrosion microcells between the alloy matrix and inclusions.The impressed current can accelerate the current velocity or corrosion current density.The regression model of the inclusion contents vs.the corrosion current density was obtained.This model can be used to quantitatively analyze the inclusion content in aluminum alloys on the basis of inclusion sensitivity to the inclusion content.It is confirmed that the electrochemical method for inclusion assessment (EcMIA) is simple and reliable,which can provide a new solution for inclusion assessment in aluminum alloy.  相似文献   

5.
The films deposited at low temperature(LT-films) have increasingly attracted theoretical and technical interests since such films exhibit obvious difference in structure and performances compared to those deposited at room temperature.Studies on the tribological properties of LT-films are rarely reported in available literatures.In this paper,the structure,morphology and tribological properties of Ag films,deposited at LT(166 K) under various Ar pressures on AISI 440C steel substrates by arc ion plating(AIP),are studied by X-ray diffraction(XRD),atomic force microscopy(AFM) and a vacuum ball-on-disk tribometer,and compared with the Ag films deposited at RT(300 K).XRD results show that(200) preferred orientation of the films is promoted at LT and low Ar pressure.The Crystallite sizes are 70 nm-80 nm for LT-Ag films deposited at 0.2 Pa and 0.8 Pa and larger than 100 nm for LT-Ag films deposited at 0.4 Pa and 0.6 Pa,while they are 55 nm-60 nm for RT-Ag films deposited at 0.2 Pa-0.6 Pa and 37 nm for RT-Ag films deposited at 0.8 Pa.The surfaces of LT-Ag films are fibre-like at 0.6 Pa and 0.8 Pa,terrace-like at 0.4 Pa,and sphere-like at 0.2 Pa,while the surfaces of RT-Ag films are composed of sphere-like grains separated by voids.Wear tests reveal that,due to the compact microstructure LT-Ag films have better wear resistances than RT-Ag film.These results indicate that the microstructure and wear resistance of Ag films deposited by AIP can be improved by low temperature deposition.  相似文献   

6.
Ni-TiN nanocomposite coatings were prepared by ultrasonic electrodeposition, and the effects of the surfactants on the coatings were investigated and the microstructure and micro rigidity of the coatings were characterized. Samples were also submitted to corrosion tests in 3% NaCl solution. The results showed that the surfactants had great effects on Ni-TiN nanocomposite coatings. The composite coatings prepared by ultrasonic electrodeposition with the surfactants were better than that of the coatings prepared without surfactants. The favorable properties of Ni-TiN nanocomposite coatings were prepared with the mixing of the non-ion and positive ion surfactants. The concentration of the mixing was 80 mg/L, and the ratio of the non-ion and positive ion surfactants was 1: 2.  相似文献   

7.
Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is considered to a promising technique to prevent and eliminate stratification in LNG storage tanks. This study is concerned with the numerical simulation of a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The jet behavior was investigated with the laboratory-based experiment of the authors' previous study. A numerical method proposed by the authors is employed for the simulation. The upper and lower fluids are water and a NaCl-water solution, respectively, and the lower fluid is issued vertically upward from a nozzle on the bottom of the tank. The Reynolds number (Re) defined by the jet velocity and the nozzle diameter ranges from 95 to 2,378, and the mass concentration of the NaCl-water solution Co is set at 0.02 and 0.04. The simulation highlights the jet-induced mixing between the upper and lower fluids. It also clarifies the effects of Re and C0 on the height and horizontal spread of the jet.  相似文献   

8.
The velocity,pressure and temperature distributions of the flow in the gap between hydro-viscous drive friction disks are the key parameters in the design of hydro-viscous drive and angular velocity controller.In the previous works dealing with the flow in the gap between disks in hydro-viscous drive,few authors considered the effect of Coriolis force on the flow.The object of this work is to investigate the flow with consideration of the effects of centrifugal force,Coriolis force and variable viscosity.A simplified mathematical model based on steady and laminar flow is presented.An approximate solution to the simplified mathematical model is obtained by using the iteration method assuming that the fluid viscosity remains constant.Then the model considering the effect of variable viscosity is solved by means of computational fluid dynamics code FLUENT.Numerical results of the flow are obtained.It is found that radial velocity profile diverges from the ideal parabolic curve due to inertial forces and tangential velocity profile is nonlinear due to Coriolis force,and pressure has two possible solution branches.In addition,it is found that variable viscosity plays an important role on pressure profiles which are significantly different from those of fluid with constant viscosity.The experimental device designed for this work consists of two disks,and one of them is fixed.Experimental pressure and temperature of the flow within test rig are obtained.It is shown that the trend of numerical results is in agreement with that of experimental ones.The research provides a theoretical foundation for hydro-viscous drive design.  相似文献   

9.
The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally varying stiffness and damping characteristics, and the influence of the spectrally-varying properties of the hydraulic mounts on the powertrain system cannot be ignored. To overcome the deficiency, an analytical quasi-linear model of the hydraulic mount and the coupled properties of the powertrain and hydraulic mounts system are formulated. The influence of the hydraulic mounts on the TRA decoupling of a powertrain system is analytically examined in terms of eigensolutions, frequency, and impulse responses, and then a new analytical axiom is proposed based on the TRA decoupling indices. With the experimental setup of a fixed decoupler hydraulic mount in the context of non-resonant dynamic stiffness testing procedure, the quasi-linear model of the hydraulic mount is verified by comparing the predictions with the measurement. And the quasi-linear formulation of the coupled system is also verified by comparing the frequency responses with the numerical results obtained by the direct inversion method. Finally, the mounting system with a combination of hydraulic mounts is redesigned in terms of the stiffness, damping and mount locations by satisfying the new axiom. The frequency and time domain results of the redesigned system demonstrate that the torque roll axis of the redesigned powertrain mounting system is indeed decoupled in the presence of hydraulic mounts (given oscillating torque or impulsive torque excitation). The proposed research provides an important basis and method for the research on a powertrain system with spectrally-varying mount properties, especially for the TRA decoupling.  相似文献   

10.
The strength of composite plate with different hole-shapes is always one of the most important but complicated issues in the application of the composite material. The holes will lead to mutations and discontinuity to the structure. So the hole-edge stress concentration is always a serious phenomenon. And the phenomenon makes the structure strength decrease very quickly to form dangerous weak points. Most partial damage begins from these weak points. According to the complex variable functions theory, the accurate boundary condition of composite plate with different hole-shapes is founded by conformal mapping method to settle the boundary condition problem of complex hole-shapes. Composite plate with commonly hole-shapes in engineering is studied by several complex variable stress fimction. The boundary integral equations are founded based on exact boundary conditions. Then the exact hole-edge stress analytic solution of composite plate with rectangle holes and wing manholes is resolved. Both of offset axis loadings and its influences on the stress concentration coefficient of the hole-edge are discussed. And comparisons of different loads along various offset axis on the hole-edge stress distribution of orthotropic plate with rectangle hole or wing manhole are made. It can be concluded that hole-edge with continuous variable curvatures might help to decrease the stress concentration coefficient; and smaller angle of outer load and fiber can decrease the stress peak value.  相似文献   

11.
A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless the constraint equations are established with a proper method and the solving approach is appropriate.In order to obtain a kinematic solution of the spherical Stephenson-III six-bar mechanism,spherical analytical theory is employed to construct the constraint equations.Firstly,the mechanism is divided into a four-bar loop and a two-bar unit.On the basis of the decomposition,vectors of the mechanism nodes are derived according to spherical analytical theory and the principle of coordinate transformation.Secondly,the structural constraint equations are constructed by applying cosine formula of spherical triangles to the top platform of the mechanism.Thirdly,the constraint equations are solved by using Bezout’ s elimination method for forward analysis and Sylvester’ s resultant elimination method for inverse kinematics respectively.By the aid of computer symbolic systems,Mathematica and Maple,symbolic closed-form solution of forward and inverse displacement analysis of spherical Stephenson-III six-bar mechanism are obtained.Finally,numerical examples of forward and inverse analysis are presented to illustrate the proposed approach.The results indicate that the constraint equations established with the proposed method are much simpler than those reported by previous literature,and can be readily eliminated and solved.  相似文献   

12.
Al–Li alloy is a new structural material with the advantages of lightweight and high strength. The extrusion profiles of Al–Li alloy are widely used in aerospace and other fields, which can significantly reduce the weight of the aerospace equipment and improve their carrying capacity and service performance. Particular service conditions of structural components in aeronautical and space areas put forward strict requirements on microstructure, mechanical properties, and dimensional precision of Al–Li alloy profiles. Therefore, it places higher requirements on the shape forming and microstructure controlling of the Al–Li alloy profiles. The manufacturing process of the profiles involves billet homogenization, hot extrusion, solution and quenching treatments, artificial aging, and others. The parameters of each process as well as the die structure have important e ects on the final performance of the profiles. This article summarizes the main applications and key mechanical properties of Al–Li alloy extrusion profiles. The technologies related to the manufacturing process of the extrusion profiles are summarized and analyzed. The related studies about the evolutions of the microstructure and mechanical properties during homogenization and extrusion processes are reviewed. The developments of the solid solution and quenching treatments as well as the aging strengthening technology for extruded Al–Li alloy profiles are also introduced. The scientific problems and key technologies that need to be solved in the manufacturing of Al–Li alloy extrusion profiles are presented, and the prospect for future development trends in these fields is given.  相似文献   

13.
Lead zirconate titanium solid-solution (PZT) thin films with various thickness are synthe-sized on titanium substrates by repeated hydrothermal treatments. Young modulus, electric-field-in-duced displacement and the density of the PZT film are measured respectively. Bimorph- type bendingactuators are fabricated using these films. The model, which is used to analyze the driving ability ofbimorph-type bending actuators by hydrothermal method, is set up. It can be seen that the drivingability of bimorph-type bending actuators can be greatly improved by optimizing the thickness of PZTthin film and substrae from the theoretical analysis results. The measured values are expected to agreewith the theoretical values calculated by the above model.  相似文献   

14.
A new method of extraction of blend surface feature is presented. It contains two steps: segmentation and recovery of parametric representation of the blend. The segmentation separates the points in the blend region from the rest of the input point cloud with the processes of sampling point data, estimation of local surface curvature properties and comparison of maximum curvature values. The recovery of parametric representation generates a set of profile curves by marching throughout the blend and fitting cylinders. Compared with the existing approaches of blend surface feature extraction, the proposed method reduces the requirement of user interaction and is capable of extracting blend surface with either constant radius or variable radius. Application examples are presented to verify the proposed method.  相似文献   

15.
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far.There exist two main problems in the operation of the two-phase flow pumps,i.e.,low overall efficiency and severe abrasion.In this study,the three-dimensional,steady,incompressible,and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics(CFD) code based on the mixture model of the two-phase flow and the RNG k-two-equation turbulence model,in which the influences of rotation and curvature are fully taken into account.The coupling between impeller and volute is implemented by means of the frozen rotor method.The simulation results predicted indicate that the solid phase properties in two-phase flow,especially the concentration,the particle diameter and the density,have strong effects on the hydraulic performance of the pump.Both the pump head and the efficiency are reduced with increasing particle diameter or concentration.However,the effect of particle density on the performance is relatively minor.An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration.The suction side of the blade is subject to much more severe abrasion than the pressure side.The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump,and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.  相似文献   

16.
Conventional analytical and numerical methods for the mechanical properties of helical threads are relied on many assumptions and approximations and thus hardly yield satisfied results. A parameterized 3D finite element model of bolted joints with real helical thread geometry is established and meshed with refined hexahedral elements. The Von Mises plasticity criterion, kinematic hardening rule of materials and interfacial contacts are employed to make it possible for the suggested model be able to approach real assembly conditions. Then, the mechanical properties of bolted joints with different thread pitches, thread numbers and modular ratios are investigated, including the contact pressure distribution at joint interfaces, the axial load distribution and stress concentration in screw threads during the loading and unloading process. Simulation results indicate that the load distribution in screw threads produced by the suggested model agrees well the results from CHEN’s photoelastic tests. In addition, an interesting phenomenon is found that tightening the bolt with a large preload first and then adjusting the clamping force by unloading can make the load distribution more uniform and reduce the maximum residual equivalent stress in thread roots by up to 40%. This research provides a simple and practical approach to constructing the 3D finite element model and predicting the mechanical properties of helical thread connection.  相似文献   

17.
There are few relevant researches on coils by tempering,and the variations of microstructure and properties of steel coil during the tempering process also remain unclear.By using thermo-mechanical control process(TMCP)technology,Mn-Ti typical HSLA steel coils with yield strength of 920 MPa are produced on the 2250 hot rolling production line.Then,the samples are taken from the coils and tempered at the temperatures of 220℃,350℃,and 620℃respectively.After tempering the strength,ductility and toughness of samples are tested,and meanwhile microstructures are investigated.Precipitates initially emerge inside the ferrite laths and the density of the dislocation drops.Then,the lath-shaped ferrites begin to gather,and the retained austenite films start to decompose.Finally,the retained austenite films are completely decomposed into coarse and short rod-shape precipitates composed of C and Ti compounds.The yield strength increases with increasing tempering temperature due to the pinning effect of the precipitates,and the dislocation density decreases.The yield strength is highest when the steel is tempered at 220℃because of pinning of the precipitates to dislocations.The total elongation increases in all samples because of the development of ferrites during tempering.The tensile strength and impact absorbed energy decline because the effect of impeding crack propagation weakens as the retained austenite films completely decompose and the precipitates coarsen.This paper clarifies the influence of different tempering temperatures on phase transformation characteristics and process of Mn-Ti typical multiphase steels,as well as its resulting performance variation rules.  相似文献   

18.
For the purpose of solving the problem that too large pole tip recession (PTR) is produced in magnetic rigid disk heads by mechanical polishing, a chemical mechanical nano-grinding experiment is performed by using a float-piece polisher with a tin plate to achieve a more plane and smoother surface. A basal solution, addition agents and a range of pH value are suitably selected to find a kind of slurry, with which the PTR can be controlled on sub-nanometer scale and the giant magnetic resistance (GMR) corrosion and electrostatic damage (ESD) can be avoided. Moreover, the cause that TiC protrudes from the substrate surface of the heads is studied. The appropriate shape and size of diamond abrasive are selected according to the chemical activation of A1203 and TiC in the same slurry. In this way, the chemical and mechanical interactions are optimized and the optimal surface that has small PTR and TiC asperity is achieved. Ultimatily, the chemical mechanical nano-grinding in combination with mechanical nano-grinding is adopted. Sub-nanometer PTR is achieved and the TiC asperity is eliminated by the chemical mechanical nano-grinding with large size ofmonocrystalline followed by mechanical nano-grinding with smalle polycrystalline diamonds.  相似文献   

19.
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method.The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.  相似文献   

20.
Recently,both the importance and awareness relating to food safety relating to agrochemicals,chemical fertilizers,the pollution of ecosystem and unwholesome foods are growing rapidly.For the same reason,the purchaser's curiosity increases to know about the production process which can be accomplished by production traceability system.The traceability system can store and superintend the specific attribute information about products regarding the productive centre,producer and production finish data.The products undergo various circulation processes and they are being managed by individually constructed traceability system.Thus,it is difficult for the producer and the consumer to guarantee the safety from transpirable issues about the falsification of production traceability because the traceability information can be re-produced by forging through various ways.So in this paper,we proposed a system for integrated management of agro-fishery products based on quick response code (QR-code) for forgery prevention which may help to solve these issues.The proposed system makes QR-code using production information provided by producer.And then it is provided to the distributor and the consumer through integrated service model using the QR-code.Therefore,this system make sure to provide the same production traceability about the products to the distributor and the consumer and always keeps both updated with the same information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号