首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effect of radiation processing on the germination of the sprout seeds mung (Phaseolus aureus), matki (Phaseolus aconitifolius), chana (Cicer arietinum), and vatana (Pisum sativum) in terms of percent germination, germination yield, sprout length, vitamin C content, and texture was investigated. Gradual decreases in the percent germination, germination yield, and sprout length with increases in radiation dose (0.5 to 2.0 kGy) were observed. Vitamin C content and texture remained unaffected for the seeds treated with doses of up to 2 kGy. To determine the efficacy of radiation treatment in elimination of foodborne pathogens, seeds inoculated with 4 log CFU/g of Salmonella Typhimurium were treated with radiation doses of 1 and 2 kGy. A reduction in counts of Salmonella Typhimurium in inoculated seeds after radiation treatment was observed. A radiation dose of 2 kGy resulted in the complete elimination of 4 log CFU/g of Salmonella Typhimurium from the inoculated seeds. However, on sprouting for 48 h, the count of Salmonella Typhimurium reached 8 log CFU/g for the control seeds and the seeds treated with a 1-kGy radiation dose. The aerobic plate counts for seeds were 2.0 to 2.6 log CFU/g, which were reduced to 0.9 to 1.2 log CFU/g on treatment with a 2-kGy radiation dose. On sprouting for 48 h, the aerobic plate count reached 8 log CFU/g for both the control and radiation-treated seeds. The study demonstrates that irradiation can control bacterial levels on seeds but not contamination introduced during posttreatment handling. Therefore, radiation processing of the final product (sprouts) is recommended, rather than of the seeds.  相似文献   

2.
The goal of this study was to determine the effects of various levels of gamma irradiation on the phenotypic characteristics of 20 strains of Salmonella Enteritidis inoculated separately into specific-pathogen-free shell eggs. Bacterial strains were inoculated into egg yolks and exposed to (60)Co radiation at doses of 0.49 to 5.0 kGy. The eggs were maintained at 25°C and analyzed for the presence of Salmonella on days 1, 2, 4, and 7, and the recovered Salmonella isolates were characterized biochemically. All strains were resistant to doses of 0.49, 0.54, 0.59, 0.8, and 1 kGy; colony counts were ≥10(5) CFU/ml of egg yolk except for one strain, which was detected at 96 h and at 7 days after irradiation at 1 kGy, with a population reduction of 2 log CFU/ml. For the other evaluated doses, 12 strains (60.0%) were resistant at 1.5 kGy and 7 strains (35.0%) were resistant at 3.0 kGy. Among all analyzed strains, 5.0 kGy was more effective for reducing and/or eliminating the inoculated bacteria; only two (10%) strains were resistant to this level of irradiation. Salmonella colony counts were significantly reduced (P < 0.01) with increasing doses from the day 1 to 7 of observation, when microbial growth peaked. Loss of mobility, lactose fermentation, citrate utilization, and hydrogen sulfide production occurred in some strains after irradiation independent of dose and postirradiation storage time. Increases in antibiotic susceptibility also occurred: seven strains became sensitive to β-lactams, two strains became sensitive to antifolates, and one strain each became sensitive to fluoroquinolone, phenicol, nitrofurans, tetracyclines, and aminoglycosides. The results indicate that up to 5.0 kGy of radiation applied to shell eggs inoculated with Salmonella Enteritidis at 4 log CFU per egg is not sufficient for complete elimination of this pathogen from this food matrix.  相似文献   

3.
Laser scanning confocal microscopy (LSCM) was used to observe the interaction of Salmonella Stanley with alfalfa sprouts. The green fluorescent protein (gfp) gene was integrated into the chromosome of Salmonella Stanley for constitutive expression, thereby eliminating problems of plasmid stability and loss of signal. Alfalfa seeds were inoculated by immersion in a suspension of Salmonella Stanley (ca. 10(7) CFU/ml) for 5 min at 22 degrees C. Epifluorescence microscopy demonstrated the presence of target bacteria on the surface of sprouts. LSCM demonstrated bacteria present at a depth of 12 microm within intact sprout tissue. An initial population of ca. 10(4) CFU/g seed increased to 7.0 log CFU/g during a 24-h germination period and then decreased to 4.9 log CFU/g during a 144-h sprouting period. Populations of Salmonella Stanley on alfalfa seeds decreased from 5.2 to 4.1 log CFU/g and from 5.2 to 2.8 log CFU/g for seeds stored 60 days at 5 and 22 degrees C, respectively. The efficacy of 100, 200, 500, or 2,000 ppm chlorine in killing Salmonella Stanley associated with sprouts was determined. Treatment of sprouts in 2,000 ppm chlorine for 2 or 5 min caused a significant reduction in populations of Salmonella Stanley. Influence of storage on Salmonella Stanley populations was investigated by storing sprouts 4 days at 4 degrees C. The initial population (7.76 log CFU/g) of Salmonella Stanley on mature sprouts decreased (7.67 log CFU/g) only slightly. Cross-contamination during harvest was investigated by harvesting contaminated sprouts, then directly harvesting noncontaminated sprouts. This process resulted in the transfer of ca. 10(5) CFU/g Salmonella Stanley to the noncontaminated sprouts.  相似文献   

4.
This study was undertaken to determine the levels of Salmonella Enteritidis in artificially inoculated eggs as affected by the temperatures under which eggs might be held from the day of lay until the day of processing. Unprocessed chicken eggs of different sizes (n=1920, with 480 being laid in each season) were inoculated in the albumen with a five-strain mixture of Salmonella at 102 CFU per egg. The eggs were stored at 4, 10, and 22 degrees C for 3 weeks and sampled twice a week to determine the populations of Salmonella and total aerobic bacteria. The season in which eggs were laid did not significantly impact the growth of the pathogen (P > 0.05). The mean populations of the inoculated Salmonella were not significantly different in eggs stored at 4 versus 10 degrees C (P > 0.05). Eggs stored at 22 degrees C had a mean Salmonella population that was 3.71 or 3.37 log higher than the Salmonella population of eggs stored at 4 or 10 degrees C (P > 0.05). The mean Salmonella population at 22 degrees C increased from the initial 2.12 log CFU/ml to 3.36 log CFU/ml after 2 weeks of storage and to 7.84 log CFU/ml after 3 weeks of storage. A sharp increase in the population of Salmonella occurred after 2 to 2.5 weeks of storage at 22 degree C. This study provided a scientific basis for the current egg handling and transporting temperature requirements and reinforced the importance of maintaining low temperatures in controlling and preventing the growth of Salmonella Enteritidis in eggs from the day of lay until the day of processing.  相似文献   

5.
Minimally processed vegetables are in demand, because they offer convenience to consumers. However, these products are often unsafe because of possible contamination with pathogens, such as Salmonella, Escherichia coli O157:H7, and Shigella species. Therefore, this study was carried out to optimize the radiation dose necessary to ensure the safety of precut carrot and cucumber. Decimal reduction doses (D-values) of Salmonella Typhimurium MTCC 98 were ca. 0.164 kGy in carrot samples and 0.178 kGy in cucumber samples. D-values of Listeria monocytogenes were determined to be 0.312 and 0.345 kGy in carrot and cucumber samples, respectively. Studies of inoculated, packaged, minimally processed carrot and cucumber samples showed that treatment with a 1-kGy dose of gamma radiation eliminated up to 4 log CFU/g of Salmonella Typhimurium and 3 log CFU/g of L. monocytogenes. However, treatment with a 2-kGy dose was necessary to eliminate these pathogens by 5 log CFU/g. Storage studies showed that both Salmonella Typhimurium and L. monocytogenes were able to grow at 10 degrees C in inoculated control samples. Neither of these pathogens could be recovered from radiation-processed samples after storage for up to 8 days.  相似文献   

6.
Universal preenrichment broth (UPB) was developed to enable enrichment of injured foodborne pathogens of different genera simultaneously in lieu of having to undergo separate simultaneous enrichment cultures for subsequent detection or isolation of each pathogen. Enrichment conditions in UPB for growth of injured pathogens to populations that will enable pathogen detection by rapid immuno-based or polymerase chain reaction (PCR)-based assays have not been defined. Hence, studies were done to determine recovery and growth rates of heat-injured Escherichia coli O157:H7, Salmonella enterica ser. Typhimurium, Salmonella enterica ser. Enteritidis. and Listeria monocytogenes in UPB. Bacterial cells were heat injured in tryptic phosphate broth at 57.2 degrees C and inoculated at populations of ca. 0.17 to 63 injured cells per ml with raw ground beef, fresh chicken, lettuce, and environmental sponge samples. Enrichment cultures were sampled at 1, 2, 3, 4, 5, 6, and 24 h at 37 degrees C postinoculation, and pathogens were enumerated on appropriate selective media. Results revealed that recovery and growth of pathogens during the first 6 h of enrichment were not sufficient to ensure adequate numbers of bacteria (> 10(3) CFU/ ml) for detection by most immunoassays or PCR assays. Cells often required 3 to 4 h for recovery before growth was initiated. Salmonella Typhimurium, Salmonella Enteritidis, E. coli O157:H7, or L. monocytogenes cell populations in enrichment cultures with ground beef or lettuce at 6 h were 0.5 to 2.9 log10 CFU/ml. At 24 h of incubation, cell counts of enrichment samples for the three pathogens from all food and environmental sponge samples ranged from 4.0 to 8.3 log10 CFU/ml. Enrichment in UPB at 37 degrees C of foods or environmental sponge samples containing heat-injured cells of Salmonella Typhimurium, Salmonella Enteritidis, E. coli O157:H7, or L. monocytogenes reliably provides at 24 h of incubation-but not at 6 h-sufficient cell populations for detection by rapid immunoassay or PCR assay procedures that can detect at least 4 log10 CFU/ml. These results raise questions regarding the sensitivity of rapid detection methods that employ an abbreviated enrichment protocol of 6 h or less.  相似文献   

7.
The radurization effects of gamma ray and electron beam irradiation at 1.5 and 3.0 kGy on beef steaks inoculated with Salmonella Typhimurium and Pseudomonas fluorescens were investigated during 8 days of storage at 5 degrees C. Total bacterial counts and numbers of Salmonella Typhimurium and P. fluorescens were analyzed at 2-day intervals. Total bacterial counts of samples irradiated by both gamma rays and electron beam were significantly (P < 0.05) reduced by 3.8 to 5.3 log CFU/g. Salmonella Typhimurium was not detectable during the experimental period. P. fluorescens counts of beef samples irradiated by gamma rays at both 1.5 and 3.0 kGy were not detected; however, P. fluorescens in samples irradiated by electron beam at 1.5 and 3.0 kGy was recovered after 2 days, and bacterial counts reached 7.8 and 6.9 log CFU/g, respectively. Both gamma ray and electron beam irradiation reduced total bacterial counts initially, possibly extending shelf life. Irradiation was very effective in destroying Salmonella Typhimurium; however, P. fluorescens was not completely eliminated by electron beam irradiation. Consequently, gamma ray irradiation was more effective than electron beam irradiation in the destruction of P. fluorescens.  相似文献   

8.
The effectiveness of radiation treatment in eliminating Salmonella Typhimurium and Listeria monocytogenes on laboratory inoculated ready-to-eat sprouts was studied. Decimal reduction doses (D10-values) for Salmonella Typhimurium and L. monocytogenes in dry seeds of mung (green gram), matki (dew gram), chana (chick pea), and vatana (garden pea) ranged from 0.189 to 0.303 kGy and 0.294 to 0.344 kGy, respectively. In sprouts made from these seeds, the D10-values ranged from 0.192 to 0.208 kGy for Salmonella Typhimurium and from 0.526 to 0.588 kGy for L. monocytogenes. Radiation treatment with a 2-kGy dose resulted in complete elimination of 10(4) CFU/g of Salmonella Typhimurium and 10(3) CFU/g of L. monocytogenes from all the four varieties of sprouts. No recovery of Salmonella Typhimurium and L. monocytogenes was observed in the radiation treated samples stored at 4 and 8 degrees C up to 12 days. Radiation treatment with 1 kGy and 2 kGy resulted in a reduction of aerobic plate counts and coliform counts by 2 and 4 log CFU/g, respectively; the yeast and mold counts and staphylococci counts decreased by 1 and 2 log CFU/g, respectively. However, during postirradiation storage at 4 and 8 degrees C, aerobic plate counts, coliform counts, yeast and mold counts, and staphylococci counts remained constant throughout the incubation period. This study demonstrates that a 2-kGy dose of irradiation could be an effective method of processing to ensure microbial safety of sprouts.  相似文献   

9.
The ability of Salmonella Stanley to attach and survive on cantaloupe surfaces, its in vivo response to chlorine or hydrogen peroxide treatments, and subsequent transfer to the interior tissue during cutting was investigated. Cantaloupes were immersed in an inoculum containing Salmonella Stanley (10(8) CFU/ml) for 10 min and then stored at 4 or 20 degrees C for up to 5 days. Periodically, the inoculated melons were washed with chlorine (1,000 ppm) or hydrogen peroxide (5%), and fresh-cut tissues were prepared. The incidence of Salmonella Stanley transfer from the rinds to the fresh-cut tissues during cutting practices was determined. A population of 3.8 log10 CFU/cm2 of Salmonella Stanley was recovered from the inoculated rinds. No significant (P < 0.05) reduction of the attached Salmonella population was observed on cantaloupe surfaces stored at 4 or 20 degrees C for up to 5 days, and the population was not reduced after washing with water. Salmonella Stanley was recovered in fresh-cut pieces prepared from inoculated whole cantaloupes with no sanitizer treatment. Washing with chlorine or hydrogen peroxide solutions was most effective immediately after inoculation, resulting in an approximate 3.0-log10 CFU/cm2 reduction, and the level of recovered Salmonella population transferred to fresh-cut samples was reduced to below detection. The effectiveness of both treatments diminished when inoculated cantaloupes stored at 4 or 20 degrees C for more than 3 days were analyzed, and the fresh-cut pieces prepared from such melons were Salmonella positive. Salmonella outgrowth occurred on inoculated fresh-cut cubes stored above 4 degrees C.  相似文献   

10.
Salmonella Typhimurium and Campylobacter jejuni were inoculated in scalding water, in chilled water, and on chicken skins to examine the effects of scalding temperature (50, 55, and 60 degrees C) and the chlorine level in chilled water (0, 10, 30, and 50 ppm), associated with the ages of scalding water (0 and 10 h) and chilled water (0 and 8 h), on bacterial survival or death. After scalding at 50 and 60 degrees C, the reductions of C. jejuni were 1.5 and 6.2 log CFU/ml in water and <1 and >2 log CFU/cm2 on chicken skins; the reductions of Salmonella Typhimurium were <0.5 and >5.5 log CFU/ml in water and <0.5 and >2 log CFU/cm2 on skins, respectively. The age of scalding water did not significantly (P > 0.05) affect bacterial heat sensitivity. However, the increase in the age of chilled water significantly (P < 0.05) reduced the chlorine effect. In 0-h chilled water. C. jejuni and Salmonella Typhimurium were reduced by 3.3 and 0.7 log CFU/ml, respectively, after treatment with 10 ppm of chlorine and became nondetectable with 30 and 50 ppm of chlorine. In 8-h chilled water, the reduction of C. jejuni and Salmonella Typhimurium was <0.5 log CFU/ml with 10 ppm of chlorine and ranged from 4 to 5.5 log CFU/ml with 50 ppm of chlorine. Chlorination of chilled water did not effectively reduce the bacteria attached on chicken skins. The D-values of Salmonella Typhimurium and C. jejuni were calculated for the prediction of their survival or death in the poultry scalding and chilling.  相似文献   

11.
ABSTRACT:  The microbiological quality of market samples of minimally processed (MP) pineapple was examined. The effectiveness of radiation treatment in eliminating Salmonella Typhimurium from laboratory inoculated ready-to-eat pineapple slices was also studied. Microbiological quality of minimally processed pineapple samples from Mumbai market was poor; 8.8% of the samples were positive for Salmonella. D10 (the radiation dose required to reduce bacterial population by 90%) value for S. Typhimurium inoculated in pineapple was 0.242 kGy. Inoculated pack studies in minimally processed pineapple showed that the treatment with a 2-kGy dose of gamma radiation could eliminate 5 log CFU/g of S. Typhimurium. The pathogen was not detected from radiation-processed samples up to 12 d during storage at 4 and 10 °C. The processing of market samples with 1 and 2 kGy was effective in improving the microbiological quality of these products.  相似文献   

12.
Increased occurrences of fresh produce-related outbreaks of foodborne illness have focused attention on effective washing processes for fruits and vegetables. A titanium dioxide (TiO2) photocatalytic reaction under UV radiation provides a high rate of disinfection. The photo-killing effects of TiO2 on bacteria in liquid cultures under experimental conditions have been widely studied. However, the disinfection effects of the TiO2 photocatalytic reaction on fresh vegetables during a washing process have not been evaluated. Our objectives were to design a pilot-scale TiO2/UV photocatalytic reactor for fresh carrots and to compare the bactericidal effects of the TiO2/UV reaction against bacteria in liquid media and on carrots. TiO2/UV photocatalytic reactions for 40, 60, and 30 s were required for the complete killing of Escherichia coli, Salmonella Typhimurium, and Bacillus cereus (initial counts of approximately 6.7 log CFU/ml), respectively. The counts of total aerobic bacteria in fresh carrots and foodborne pathogenic bacteria in inoculated carrots were also measured. Counts of total aerobic bacteria were reduced by 1.8 log CFU/g after TiO2/UV photocatalytic disinfection for 20 min compared with a 1.1-log CFU/g reduction by UV alone. E. coli, Salmonella Typhimurium, and B. cereus (8 log CFU/ml) were inoculated onto carrots, and the number of surviving bacteria in carrots was determined after treatment. The TiO2/UV treatment exhibited 2.1-, 2.3-, and 1.8-log CFU/g reductions in the counts of E. coli, Salmonella Typhimurium, and B. cereus, respectively, compared with 1.3-, 1.2-, and 1.2-log CFU/g reductions by UV alone. The TiO2/UV photocatalyst reaction showed significant bactericidal effects, indicating that this process is applicable to nonthermal disinfection of fresh vegetables.  相似文献   

13.
Refrigeration of eggs is vital for restricting the multiplication of Salmonella enterica serotype Enteritidis contaminants, but differences between Salmonella Enteritidis strains or phage types in their survival and multiplication patterns in egg contents might influence the effectiveness of refrigeration standards. The present study compared the abilities of 12 Salmonella Enteritidis isolates of four phage types (4, 8, 13a, and 14b) to multiply rapidly in egg yolk and to survive for several days in egg albumen. The multiplication of very small numbers of Salmonella Enteritidis inoculated into yolk (approximately 10(1) CFU/ml) was monitored during 24 h of incubation at 25 degrees C, and the survival of much larger numbers of Salmonella Enteritidis inoculated into albumen (approximately 10(5) CFU/ml) was similarly evaluated during the first 3 days of incubation at the same temperature. In yolk, the inoculated Salmonella Enteritidis strains multiplied to mean levels of approximately 10(3) CFU/ml after 6 h of incubation and 10(8) CFU/ml after 24 h. In albumen, mean levels of approximately 10(4) CFU/ml or more of Salmonella Enteritidis were maintained through 72 h. Although a few differences in multiplication and survival were observed between individual isolates, the overall range of values was relatively narrow, and no significant differences (P < 0.05) were evident among phage types.  相似文献   

14.
Bacterial pathogens may colonize meat plants and increase food safety risks following survival, stress hardening, or proliferation in meat decontamination fluids (washings). The objective of this study was to evaluate the ability of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes to survive or grow in spray-washing fluids from fresh beef top rounds sprayed with water (10 or 85 degrees C) or acid solutions (2% lactic or acetic acid, 55 degrees C) during storage of the washings at 4 or 10 degrees C in air to simulate plant conditions. Inoculated Salmonella Typhimurium DT 104 (5.4 +/- 0.1 log CFU/ml) died off in lactate (pH 2.4 +/- 0.1) and acetate (pH 3.1 +/- 0.2) washings by 2 days at either storage temperature. In contrast, inoculated E. coli O157:H7 (5.2 +/- 0.1 log CFU/ml) and L. monocytogenes (5.4 +/- 0.1 log CFU/ml) survived in lactate washings for at least 2 days and in acetate washings for at least 7 and 4 days, respectively; their survival was better in acidic washings stored at 4 degrees C than at 10 degrees C. All inoculated pathogens survived in nonacid (pH > 6.0) washings, but their fate was different. E. coli O157:H7 did not grow at either temperature in water washings, whereas Salmonella Typhimurium DT 104 failed to multiply at 4 degrees C but increased by approximately 2 logs at 10 degrees C. L. monocytogenes multiplied (0.6 to 1.3 logs) at both temperatures in water washings. These results indicated that bacterial pathogens may survive for several days in acidic, and proliferate in water, washings of meat, serving as potential cross-contamination sources, if pathogen niches are established in the plant. The responses of surviving pathogens in meat decontamination waste fluids to acid or other stresses need to be addressed to better evaluate potential food safety risks.  相似文献   

15.
Bacterial injury, including leakage of intracellular substance and viability loss, of Escherichia coli K-12 (ATCC 23716) and Salmonella Enteritidis (ATCC 13076) inoculated in liquid egg white and liquid whole egg was determined by thermal death time disk. E. coli K-12 and Salmonella Enteritidis were inoculated in liquid egg white and liquid whole egg to a final count of 7.8 log CFU/ml and were thermally treated with thermal death time disks at room temperature (23"C), 54, 56, 58, and 60 degrees C from 0 to 240 s. Sublethal injury, leakage of intracellular substances, and viability loss of E. coli K-12 and Salmonella Enteritidis was investigated by plating 0.1 ml on selective trypticase soy agar containing 3% NaCl, 5% NaCl, sorbitol MacConky agar, and xylose lysine sodium tetradecylsulfate and nonselective trypticase soy agar. No significant (P > 0.05) differences on percent injury or viability loss for E. coli K-12 and Salmonella populations were determined in all samples treated at 23 degrees C. Sublethal injury occurred in E. coli and Salmonella populations at 54 degrees C or above for 120 s. Viability losses for both bacteria averaged 5 log at 54 degrees C or above for 180 s, and the surviving populations were below detection (<10 CFU/ml). Thermal treatment at 40 degrees C and above led to membrane damage, leakage, and accumulation of intracellular ATP from 2 to 2.5 log fg/ml and UV-absorbing substances of 0.1 to 0.39 in the treated samples. These results indicate similar thermal injury/damage on both E. coli and Salmonella membranes as determined by the amount of inactivation, viability loss, and leakage of intracellular substances of bacteria.  相似文献   

16.
To study the potential of three bacterial pathogens to cross-contaminate orange juice during extraction, normal operation conditions during juice preparation at food service establishments were simulated. The spread of Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes from inoculated oranges to work surfaces and to the final product was determined. The transference of these three bacterial pathogens to orange juice made from uninoculated oranges with the use of contaminated utensils was also studied. Fresh oranges were inoculated with a marker strain of rifampicin-resistant Salmonella Typhimurium, E. coli O157:H7, or L. monocytogenes. Final pathogen levels in juice were compared as a function of the use of electric or mechanical juice extractors to squeeze orange juice from inoculated oranges. Pathogen populations on different contact surfaces during orange juice extraction were determined on sulfite-phenol red-rifampicin plates for Salmonella Typhimurium and E. coli O157:H7 and on tryptic soy agar supplemented with 0.1 g of rifampicin per liter for L. monocytogenes. After inoculation, the average pathogen counts for the orange rind surface were 2.3 log10 CFU/cm2 for Salmonella Typhimurium, 3.6 log10 CFU/cm2 for E. coli O157:H7, and 4.4 log10 CFU/cm2 for L. monocytogenes. This contamination was spread over all utensils used in orange juice squeezing. Mean pathogen counts for the cutting board, the knife, and the extractor ranged from -0.3 to 2.1 log10 CFU/cm2, and the juice contained 1.0 log10 CFU of Salmonella Typhimurium per ml, 2.3 log10 CFU of E. coli O157:H7 per ml, and 2.7 log10 CFU of L. monocytogenes per ml. Contact with contaminated surfaces resulted in the presence of all pathogens in orange juice made from uninoculated oranges. These results give emphasis to the importance of fresh oranges as a source of pathogens in orange juice.  相似文献   

17.
Utilization of ferrioxamine E (FE) as a sole source of iron distinguishes Salmonella from a number of related species, including Escherichia coli. FE is not able to serve as a source of iron for E. coli or the Proteus-Providencia-Morganella group. This confers a selective advantage on Salmonella Enteritidis in egg white supplemented with FE. The optimum concentration of FE that promoted a selective advantage for Salmonella in egg white was determined. Four supplementation concentrations were evaluated (25, 50, 200, and 500 microg/ml) in egg white artificially inoculated with proportionally mixed cultures of a rifampin-resistant strain of Salmonella Enteritidis (0.1 ml of 102 CFU/ml) and E. coli K-12 (0.1 ml of 10(1) through 10(8) CFU/ml). After a 24-h incubation at 37 degrees C, Salmonella and E. coli populations were enumerated. At higher concentrations of FE (>50 microg/ml), both Salmonella and E. coli were able to use the iron supplement (1 to 8.5 log CFU/ml and 1.8 to 8 log CFU/ml, respectively); however, lower FE concentrations (< or = 50 microg/ml) exclusively promoted Salmonella growth. Salmonella was unrecoverable without supplementation. This study indicates that optimum levels of FE supplementation in egg can improve the selective detection for Salmonella Enteritidis among other competitive organisms.  相似文献   

18.
Propylene oxide (PPO) is commonly used to reduce microbial populations in U.S. bulk raw almonds, but the process has not been validated for reduction of foodborne pathogens. The reduction of Salmonella Enteritidis phage type (PT) 30 inoculated onto almonds was evaluated after exposure to a standard commercial PPO treatment. Almonds were inoculated with Salmonella Enteritidis PT 30 to approximately 8.0 log CFU/g after drying. Inoculated almonds were placed in bags designed for gaseous sterilization and positioned in the center of 900-kg bins or 22.7-kg boxes of warmed almonds. Almonds were further warmed to an initial temperature of 23 to 34 degrees C, treated with PPO (0.5 kg/m3 for 4 h), and held for 0 or 2 days at 38 to 43 degrees C followed by storage for 2 to 5 days at 15 to 18 degrees C. Salmonella Enteritidis PT 30 was recovered by vigorously shaking 100 g of almonds in 100 ml of Butterfield's phosphate buffer, plating onto tryptic soy or bismuth sulfite agar, and incubating at 35 degrees C for 24 or 48 h, respectively. Populations of Salmonella Enteritidis were consistently reduced by > 5.0 log CFU/g (5.2 to > 8.6 log CFU/ g) when initial counts were compared with counts obtained 5 days after PPO treatment. Reductions of 1.2 to 4.4 log CFU/g occurred during post-PPO storage. Reductions were not significantly improved (P < 0.05) when almonds were held at 38 to 43 degrees C after PPO treatment. PPO residues were > 400 ppm immediately after removal from the PPO chamber and declined to < 300 ppm during post-PPO storage. PPO is an effective treatment for reducing populations of Salmonella Enteritidis PT 30 on bulk almonds.  相似文献   

19.
The relative incidence of Psychrobacter spp. in rabbit meat, the radioresistance of these bacteria, and the growth of nonirradiated and irradiated psychrobacter isolates, alone and in coculture, during chilled storage of inoculated sterile rabbit meat was investigated. Psychrobacter spp. accounted for 4.2% of the storage psychrotrophic flora of 30 rabbit carcasses. The radiation D10-values of 10 Psychrobacter isolates, irradiated at 4 degrees C in minced rabbit meat, ranged from 0.8 to 2.0 kGy, with significant (P < 0.05) differences among strains. Over 12 days of storage at 4 degrees C, pure cultures of two nonirradiated psychrobacter strains (D10 = 2 kGy) were capable of substantial increases (up to 3 log CFU/g) in sterile rabbit meat, but when the fastest growing strain was cocultured with Pseudomonas fluorescens and Brochothrix thermosphacta isolates, maximum cell densities and growth rates were significantly (P < 0.01) lower. After irradiation (2.5 kGy) of pure cultures in sterile rabbit meat, surviving cells of both Psychrobacter strains decreased for a period of 5 to 7 days and then resumed multiplication that, at day 12, resulted in a similar increase (1.6 to 1.7 log CFU/g) over initial survivor numbers. When irradiated in combination with the spoilage bacteria, one of the strains required 12 days to reach initial numbers. In conclusion, Psychrobacter spp. are radioresistant nonsporeforming bacteria with a low relative incidence among the storage flora of rabbit meat, unable to compete with food spoilage bacteria in this ecosystem and apparently not a major contributor to the spoilage of rabbit meat after irradiation.  相似文献   

20.
The survival of single strains or cocktails of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes was evaluated on walnut kernels. Kernels were separately inoculated with an aqueous preparation of the pathogens at 3 to 10 log CFU/g, dried for 7 days, and then stored at 23°C for 3 weeks to more than 1 year. A rapid decrease of 1 to greater than 4 log CFU/g was observed as the inoculum dried. In some cases, the time of storage at 23°C did not influence bacterial levels, and in other cases the calculated rates of decline for Salmonella (0.05 to 0.35 log CFU/g per month) and E. coli O157:H7 (0.21 to 0.86 log CFU/g per month) overlapped and were both lower than the range of calculated declines for L. monocytogenes (1.1 to 1.3 log CFU/g per month). In a separate study, kernels were inoculated with Salmonella Enteritidis PT 30 at 4.2 log CFU/g, dried (final level, 1.9 log CFU/g), and stored at -20, 4, and 23°C for 1 year. Salmonella Enteritidis PT 30 declined at a rate of 0.10 log CFU/g per month at 23°C; storage time did not significantly affect levels on kernels stored at -20 or 4°C. These results indicate the long-term viability of Salmonella, E. coli O157:H7, and L. monocytogenes on walnut kernels and support inclusion of these organisms in hazard assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号