首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of mid-winter experiments were carried out on the ice in the rubble field around Tarsiut Island in the Beaufort Sea. The tests included grain structure determinations, salinity and density of the ice, small beam flexural strength and fracture toughness. Typical values for flexural strength and fracture toughness were 0.6–1.0 MPa and 100–140 kPa m12 respectively. Both properties were dependent on brine volume and depth in the ice sheet. In comparing these results with identical tests on finegrained freshwater ice it was found that for comparable loading conditions, the strength of the sea ice was significantly lower than the strength of the freshwater ice, whereas the fracture toughness of the sea ice was higher than the fracture toughness of the freshwater ice.  相似文献   

2.
The problem of a mode I fracture toughness of wood is considered. After a short discussion of relevant literature the test results concerning mode I fracture on three types of wood and the obtained values of stress intensity factor, K Ic, are discussed. The compressive and tensile strength of the wood fibres and flexural strength are also presented. A considerable variation of the stress intensity factor, K Ic, has been found to depend on the wood species and the direction of taking specimens for tests. The character of a failure process and the obtained values of the stress intensity factor, K Ic, were determined by interrelations of cohesion forces existing between particular components of the wood structure, and by anisotropy of the wood. Both the compressive and tensile strength tests performed along the fibres and the bending strength tests crosswise to the fibres have not confirmed the tendencies observed in the fracture toughness tests. The investigations performed show the usefulness of fracture mechanics for evaluation of the strength properties of wood. It is concluded that materials science must consider wood as a valuable and rewarding material upon which to focus research efforts.  相似文献   

3.
Abstract: This paper is concerned with the study of temperature influence on Young’s modulus, ultimate strength and fracture toughness properties of PVC/CaCO3 particulate composites with different volume fractions. The tests were performed in three‐ and four‐point bending. The resonant technique was also used to analyse the influence of both volume fraction and temperature on Young’s modulus. Significant decrease of ultimate strength, fracture toughness and Young’s modulus was observed with the increase of the temperature. Ultimate strength decreases with the increase of particle volume fraction at room temperature. For the other temperatures, this decreasing trend is less clear. PVC/CaCO3 flexural Young’s modulus calculated for a much lower loading segment increases with volume fraction. The same trend was obtained using the resonant technique. However, as the loading segment used to calculate the Young’s modulus was increased a significant decrease of Young’s modulus was obtained as a result of a progressive debonding at the particle‐matrix interface. A 2D simplified FE simulation also confirms such trend. The dependence of Young’s modulus relatively to the loading segment increases as the volume fraction is increased, leading to composite Young’s modulus below matrix value for higher volume fractions and higher loading segments. Fracture toughness decreases with volume fraction.  相似文献   

4.
High toughness and reliable three dimensional textile carbon fiber reinforced silicon carbide composites were fabricated by chemical vapor infiltration. Mechanical properties of the composite materials were investigated under bending, shear, and impact loading. The density of the composites was 2.0–2.1 g cm−3 after the three dimensional carbon preform was infiltrated for 30 h. The values of flexural strength were 441 MPa at room temperature, 450 MPa at 1300°C, and 447 MPa at 1600°C. At elevated temperatures (1300 and 1600°C), the failure behavior of the composites became some brittle because of the strong interfacial bonding caused by the mis-match of thermal expansion coefficients between fiber and matrix. The shear strength was 30.5 MPa. The fracture toughness and work of fracture were as high as 20.3 MPa m1/2 and 12.0 kJ·m−2, respectively. The composites exhibited excellent uniformity of strength and the Weibull modulus, m, was 23.3. The value of dynamic fracture toughness was 62 kJ·m−2 measured by Charpy impact tests.  相似文献   

5.
The present paper examines size effect on the strength of short glass fibre-reinforced phenolic resin (SGP) composites made by press moulding with different loading modes and specimen shapes. Three- and four-point flexural tests and tension–torsion combined tests were conducted at room temperature in order to evaluate the influence of Vf and loading mode on fracture strength. The obtained uniaxial strength data were analysed using the Weibull statistical theory. The relationship between fracture strength and effective volume was investigated based on the Weibull statistical theory and agreed well with the effective volume theory (EVT), regardless of specimen size, dimensions or loading mode. The experimental results revealed that the tension–torsion multiaxial SGP strength was in agreement with the Tsai–Hill failure criterion. The EVT was also applied to the Tsai–Hill failure criterion to consider the size effect, and the validity of the proposed method was confirmed experimentally.  相似文献   

6.
Dynamic fracture toughness of a high strength armor steel   总被引:1,自引:0,他引:1  
This paper summarizes the results of a research being carried out to determine fracture behavior both in static and dynamic conditions of high strength armor steel Armox500T. In this research, notched specimens were cut to be tested in three-point bending test. Specimens were pre-cracked by flexural fatigue. Thereafter, some specimens were tested in bending up to rupture to determine the static fracture toughness KIC. To obtain fracture toughness in dynamic conditions, a split Hopkinson bar modified to perform three-point bending tests was used. In this device, displacements and velocities of the specimen were measured, as well as the rupture time by means of fracture detection sensors, glued to the specimens. After that, a numerical simulation of the test was performed by using LS DYNA hydrocode, obtaining stresses and strain histories around the crack tip. From these results, the stress intensity factor history was derived. By using the rupture time, measured by the sensors, the value of the fracture toughness computed was unrealistic. Therefore, the use of a numerical procedure to obtain the rupture time was decided, by comparing experimental results of velocities at the transmission bar with numerical results obtained with several rupture times. With this procedure, the computation of dynamic fracture toughness was possible. The method shows that the measurement of the dynamic fracture toughness is possible without the needs of using crack sensors or strain gauges. It can be observed that fracture toughness of this steel under static and dynamic conditions is quite similar.  相似文献   

7.
A hierarchical Cf/C–SiC composite was fabricated via in situ growth of carbon nanotubes (CNTs) on fiber cloths following polymer impregnation and pyrolysis process. The effects of CNTs grown in situ on mechanical properties of the composite, such as flexural strength, fracture toughness, crack propagation behavior and interfacial bonding strength, were evaluated. Fiber push-out test showed that the interfacial bonding strength between fiber and matrix was enhanced by CNTs grown in situ. The propagation of cracks into and in fiber bundles was impeded, which results in decreased crack density and a “pull-out of fiber bundle” failure mode. The flexural strength was increased while the fracture toughness was not improved significantly due to the decreased crack density and few interfacial debonding between fiber and matrix, although the local toughness can be improved by the pull-out of CNTs.  相似文献   

8.
Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and microhardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO2. Flexural strength and fracture toughness were dependent on CeO2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness, 9.2 MPa√m.  相似文献   

9.
The dependence of the fracture toughness, K IC, on the loading rate has been calculated. On the basis of linear elastic fracture mechanics (LEFM) a strong dependence of the fracture toughness on the loading rate is obtained if subcritical crack growth is taken into account. If the subcritical crack growth parameters n and B are sufficiently small, which correspond to a high velocity of crack extension, the fracture toughness should decrease at lower loading rates. This behaviour is similar to the well-known decrease of bending strength. The experimental results for alumina containing glassy phase as a model material, however, show a maximum in a certain regime of loading rates. A model is established, which combines LEFM and the viscoelasticity, and leads to a maximum of K IC at a certain loading rate dependent on the viscosity of the glassy phase.  相似文献   

10.
This paper describes the mechanical response of lightweight mortars subjected to impact loading in flexure. Expanded perlite aggregate with a bulk density of 64 kg/m3 was used at between 0 and 8 times by volume of Portland cement to yield a range of mortars with density between 1000 and 2000 kg/m3. Some specimens were reinforced with a polypropylene microfibre at 0.1% volume fraction and the dynamic fracture toughness was evaluated by means of an instrumented drop-weight impact system. Companion tests were carried out in compression under quasi-static loading to standardise the mixes. The compressive strength and elastic modulus scale as the cube of the relative density, defined as the ratio of the density of the mortar to that of Portland cement paste. Whereas the flexural strength and fracture toughness were both linearly proportional to the relative density of the mortar under quasi-static loading, there was an increase in their sensitivity to relative density at higher loading rates. Contrary to what is seen in regular concrete, fibre reinforcement led to an increase in the stress-rate sensitivity of flexural strength in lightweight mortars. For the same impact velocity, the stress-rates experienced by a specimen was strongly influenced by its density. While the stress-rate sensitivity of flexural strength dropped with a decrease in the mix density, that of the fracture toughness was consistently higher for the lighter mixes.  相似文献   

11.
研究了玻璃纤维增强树脂基复合材料 (GFRP) 层合板弯曲强度高温加速试验的时间温度相关性。在不同的温度和加载速率下进行了三点弯曲试验。通过弯曲强度控制曲线的时间温度移动因子曲线分析了GFRP层合板的弯曲强度时间温度相关性。探讨了低温短时和高温长时的失效机理。通过玻璃纤维拉伸延迟断裂试验,对GFRP层合板的低温短时弯曲强度的时间温度相关性进行了修正。修正后的弯曲强度控制曲线的时间温度移动因子曲线与基体树脂动态杨氏模量的时间温度移动因子曲线非常吻合,表明GFRP层合板的弯曲强度取决于基体树脂的粘弹性性能。   相似文献   

12.
A series of tensile and three-point bending studies was conducted at various temperatures and loading rates using a commercial poly(methyl methacrylate) (PMMA). Tensile properties and fracture toughness data were obtained for the various conditions. In general, both tensile strength and fracture toughness increase with increasing loading rate and decreasing temperatur E. However, when the temperature reaches the glass transition region, the relationships between fracture toughness, loading rate, and temperature become very complex. This behaviour is due to the simultaneous interaction of viscoelasticity and localized plastic deformation. In the glass transition region, the fracture mechanism changes from a brittle to a ductile mode of failure. A failure envelope constructed from tensile tests suggests that the maximum elongation that the glassy PMMA can withstand without failure is about 130%. The calculated apparent activation energies suggest that the failure process of thermoplastic polymers (at least PMMA) follows a viscoelastic process, either glass or transition. The former is the case if crack initiation is required.Deceased.  相似文献   

13.
通过流延成型、丝网印刷和共烧结法成功制备了阳极支撑的平板式固体氧化物燃料电池(SOFCs)。采用陶瓷样品同轴环施力方式和双扭法测试单电池的抗弯强度和断裂韧性分别为156.69 MPa与2.51 MPa•m1/2。当阳极支撑体由陶瓷(NiO/YSZ)还原为金属陶瓷(Ni/YSZ), 其抗弯强度和断裂韧性分别为104.48 MPa与3.95 MPa•m1/2。同时电池的弯曲变形测试表明: 单电池经过阳极还原后弯曲变形程度变大, 平整化压力从电池阳极还原前的108 N增加至184 N, 而电池抵抗破裂能力增强。本研究显示, 随着阳极支撑体还原后单电池的断裂韧性显著提高, 将有效减缓其弯曲变形所引起的不利影响, 改善单电池的综合力学性能。  相似文献   

14.
The room temperature mechanical properties of Al2O3 composites reinforced with 25 vol% of either MoSi2 or Nb particulates were investigated. It was found that addition of Nb particles resulted in a reduction in the elastic modulus, but caused a significant increase in both flexural strength and fracture toughness. On the other hand, the addition of MoSi2 particles resulted in only a marginal decrease in elastic modulus and marginal increase in both flexural strength and fracture toughness. The elastic modulus results were explained on the basis of Tsai - Halpin model. For both the composites, the increase in flexural strength was attributed to the grain refinement of the Al2O3 matrix as well as the load transfer to the reinforcement particles. The marginal increase in fracture toughness in Al2O3 / MoSi2 composites was attributed to crack deflection, whereas the threefold increase in fracture toughness in Al2O3 / Nb composites was attributed to crack blunting and bridging.  相似文献   

15.
In this paper, SiO2f/SiO2 composites reinforced by 3D four‐directional braided quartz preform were prepared by the silica sol‐infiltration‐sintering method in a relatively low sintering temperature (450 °C). To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural and shear loading. The microstructure and the fracture behaviour of the 3D four‐directional braided SiO2f/SiO2 composites were studied. The tensile strength, flexural strength and the in‐plane shear strength were 30.8 MPa, 64.0 MPa and 22.0 MPa, respectively. The as‐fabricated composite exhibited highly nonlinear stress–strain behaviour under all the three types of loading. The tensile and flexural fracture mechanisms were fully discussed. The fracture mode of the 3D four‐directional braided SiO2f/SiO2 composite in the Iosipescu shear testing was based on a mixed mechanism because of the multi‐directivity of the composite. Owing to low sintered temperature, the fibre/matrix interfacial strength was weak. The SiO2f/SiO2 composites showed non‐catastrophic behaviour resulting from extensive fibre pull‐out during the failure process.  相似文献   

16.
Single wall carbon nanotubes (SWCNTs) were dispersed in polystyrene (PS) at 0.1, 0.2, 0.3 and 1.0 wt.% (weight percent) concentrations using a surfactant assisted method. The resulting nanocomposites were characterized for their electrical conductivity, mechanical strength and fracture toughness properties. Results show a significant improvement in electrical conductivity with electrical percolation occurring by 0.2 wt.% SWCNT loading and the SWCNT-PS nanocomposite fully conductive at 1.0 wt.%. Three-point bend tests showed a decline in flexural strength and break strain with the addition of 0.1 wt.% SWCNTs. Improvements in the flexural modulus, strength and break strain with increasing SWCNT wt.% content followed The fracture toughness of the SWCNT-PS nanocomposites, in terms of the critical stress-intensity factor KIC, was reduced relative to the neat material. From optical and high resolution scanning electron microscopy the presence of the carbon nanotubes is shown to have an adverse effect on the crazing mechanism in this PS material, resulting in a deterioration of the mechanical properties that depend on this mechanism.  相似文献   

17.
The influence of reprocessing by injection moulding on properties of polycarbonate has been studied. It was found that reprocessing reduces the mean fibre length and increases the melt flow index. There was no variation in tensile or flexural properties with the number of reprocessing cycles. Fracture toughness, K c, measured via notched tensile and flexural bars indicated that the material toughness is affected by the number of reprocessing cycles. The effect was more pronounced in bending than in tension. Strain energy release rate, G c, was found not to be affected significantly by the number of reprocessing cycles. Although, as the material was reprocessed, fracture parameters were always lower than that of the virgin unprocessed material.The influence of reprocessing on weld-line properties was also investigated using notched tensile specimens. It was found that whereas tensile strength is not affected by the presence of the weld-line, fracture toughness deteriorated significantly, giving a weld-line integrity factor, F, of 0.75. The value of F was not affected significantly by the number of reprocessing cycles.  相似文献   

18.
It is well established that most construction materials behave differently under static and dynamic loading. However, the literature on the time-dependent response of masonry joints is scarce, particularly with regard to the bond behaviour in historical stone masonry. This paper describes the dynamic response of sandstone masonry units bound with hydraulic lime mortars (HLMs). A drop weight impact machine was used to generate stress rates up to 107 kPa/s. The dynamic impact factor and stress rate sensitivity were evaluated for the flexural strength of the sandstone, mortar and for the bond strength of the unit and further, the pattern of failure was noted in the units for each mortar mix and loading rate. Based on a related study on the fracture toughness of HLM, polypropylene micro-fibres were incorporated at 0, 0.25 and 0.5% volume fraction into the mortar. Results show that the flexural bond strength was more sensitive to stress rate than the flexural strength of the mortar, at similar rates of loading. Further, the stress rate sensitivity of the bond strength decreased with an increase in the fibre content. Also, whereas the mode of failure in the masonry units under quasi-static loading was through fracture at the mortar-block interface, the failure plane transferred to within the mortar under dynamic loading, particularly in the presence of fibre reinforcement.  相似文献   

19.
This work describes failure analysis of a feeding pipeline of an oil refinery. For this analysis visual inspection, dye penetration, optical and electron microscopy, XRD, tensile tests, fracture toughness tests and stress calculations were used. Result of the investigations show that hydrogen embrittlement has played an important role in the failure of the pipeline. For completing the case, hydrogen embrittlement damage of the piping material made from commercial ASTM A105M low alloy manganese steel was studied by using baking and hydrogenation treatments. Baking treatment was carried out at 520 °C for 20 min followed by slow cooling while hydrogenation treatment was carried out in a solution of H2SO4 which contained As2O3 for 0–6 h under cathodic situation. Then change in the mechanical properties and fracture toughness of the steel after the treatments were measured by tensile and fracture toughness tests. In addition, fractography was carried out using a scanning electron microscope (SEM) and image analyzer. Results show that the baking treatment increased elongation to failure and fracture toughness significantly and reduced yield strength slightly compared to the failed condition of the pipe. Hydrogenation treatment decreased elongation to failure and fracture toughness of the material considerably and increased strength barely. Increase in the hydrogenation time reduced ductility of the steel further more. These results indicate that hydrogen through hydrogen embrittlement mechanism, made the pipe material brittle and susceptible to cracking. Embrittlement with the assistance of an emergency shutdown and stress concentration provides damage nucleation and finally developed brittle fracture.  相似文献   

20.
The effects of the content and position of shape memory alloy (SMA) wires on the mechanical properties and interlaminar fracture toughness of glass‐fiber‐reinforced epoxy (GF/epoxy) composite laminates are investigated. For this purpose, varying numbers of SMA wires are embedded in GF/epoxy composite laminates in different stacking sequences. The specimens are prepared by vacuum‐assisted resin infusion (VARI) processing and are subjected to static tensile and three‐point‐bending tests. The results show that specimens with two SMA wires in the stacking sequence of [GF2/SMA/GF1/SMA/GF2] and four SMA wires in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] exhibit optimal performance. The flexural strength of the optimal four‐SMA‐wire composite is lower than that of the pure GF/epoxy composite by 5.76% on average, and the flexural modulus is improved by 5.19%. Mode‐I and II interlaminar fracture toughness tests using the SMA/GF/epoxy composite laminates in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] are conducted to evaluate the mechanism responsible for decreasing the mechanical properties. Scanning electron microscopy (SEM) observations reveal that the main damage modes are matrix delamination, interfacial debonding, and fiber pullout.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号