首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(methyl methacrylate) (PMMA)/dodecylamine templated lamellar aluminophosphate (DDA-LAP) intercalated nanocomposites are prepared by in situ bulk polymerization of MMA. The intercalated structure is characterized. With the intercalation of DDA-LAP in PMMA matrix, the glass-transition temperatures of nanocomposites (Tg) are increased. The nanocomposites obtained keep relatively high transparency in optical property and have a significant improvement in mechanical properties and thermal stability. The mechanism for the properties enhancement is investigated. The strong interfacial interaction between the aluminophosphate layers and the PMMA chains, the homogeneously distribution and the graphitized char formation during heating are three key roles for the properties improvement.  相似文献   

2.
Calcium carbonate was synthesized by in situ deposition technique and its nano size (35–60 nm) was confirmed by transmission electron microscopy (TEM). Composites of the filler CaCO3 (micro and nano) and the matrix poly(vinyl chloride) (PVC) were prepared with different filler loadings (0–5 wt%) by melt intercalation. Brabender torque rheometer equipped with an internal mixer has been used for preparation of formulations for composites. The effect of filler content both nano- and micro level on the nanostructure and properties is reported here. The nanostructures were studied by wide angle X-ray diffraction and scanning electron microscopy. The mechanical, thermal, and dynamic mechanical properties of PVC/micro- and nano-CaCO3 composites were characterized using universal testing machine, thermogravimetric analyzer, and dynamic mechanical analyzer. The results of thermal analysis indicated that the thermal stability of PVC/nano-CaCO3 composites was improved as compared with corresponding microcomposites, and that of pristine PVC and maximum improvement was obtained at 1 and 3 phr loadings. However, the tensile strength decreased significantly with increase loading of both nano- and micro-CaCO3, whereas storage modulus and glass transition temperature increased significantly.  相似文献   

3.
Poly(methyl methacrylate) (PMMA)/lanthanum hydroxide (La(OH)3) nanowire nanocomposites were prepared by in-situ polymerization of methyl methacrylate (MMA) in the DMF solution. The improvement in thermal stability of the nanocomposites is remarkable with low inorganic nanowires content. The experimental results indicate ultimate network formation for the nanocomposites is possibly through interaction between La3+ and MMA monomer during polymerization. The network induces the mobility restriction of polymer chains and greatly prevents polymer chains from decomposition. The characteristic of one-dimensional nanowires used here may play a key role in the formation of the “cross-link” network and decision of the low content of nanowires addition in the polymer matrix.  相似文献   

4.
Different nanocomposites based on virgin as well as treated kaolinites, as dispersed phases, and hyperbranched poly(amidoamine) (PAMAM) as a continuous phase were formulated using aqueous dispersion method. The interactive forces between the phases were evidenced using different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that intercalation of PAMAM took place in pre-expanded kaolinite to give exfoliated nanocomposite. However, virgin kaolinite was successfully intercalated with PAMAM without pretreatment to give a nanocomposite of intercalated type with a basal space of about 47 Å. All samples exhibited lower Tg values along with worsened thermal stability compared to the parent polymer.  相似文献   

5.
Dodecyl sulfate (DS), one kind of sulfate anion, was intercalated in the interlayer space between CoAl layered double hydroxide (CoAl-LDH) layers, and then polyurethane (PU) based nanocomposites were prepared by in situ intercalation polymerization with different amounts of the organo-modified CoAl-LDH. An exfoliated dispersion of CoAl-LDH layers in PU matrix was verified by the disappearance of the (0 0 3) reflection of the XRD results when the LDH loading was less than 2.0 wt%. Tensile testing indicated that excellent mechanical properties of PU/LDH nanocomposites were achieved. The weak alkaline catalysis of DS to polyurethane chains, combined with the dehydration and structural degradation of the LDH below 300 °C, accounted for the process of proceeded degradation as shown in TGA results. The real-time FTIR revealed that the as-prepared nanocomposites had a slower thermo-oxidative rate than neat PU from 160 °C to 340 °C, probably due to the barrier effect of LDH layers. These results suggested potential applications of CoAl-LDH as a promising flame retardant in PUs.  相似文献   

6.
Poly (styrene-acrylonitrile) (SAN)/clay nanocomposites have been prepared by melt intercalation method from pristine montmorillonite (MMT), using hexadecyl trimethyl ammonium bromide (C16) and hexadecyl triphenyl phosphonium bromide (P16) as the reactive compatibilizers between polymer and clay. The influence of the reactive compatibilizers proportion relative to the clay on the structure and properties of the SAN/clay nanocomposites is investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), high-resolution electron microscopy (HREM), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The effects of the two different clays (MMT and organic modified MMT) on the nanocomposites formation, morphology and property are also studied. The results indicate that the SAN cannot intercalate into the interlayers of the MMT and results in microcomposites. In the presence of the reactive compatibilizers, the dispersion of clay in SAN is rather facile and the SAN/clay nanocomposites reveal an intermediate morphology, an intercalated structure with some exfoliation and the presence of small tactoids. The appropriate proportion with 3 wt% reactive compatibilizers to 5 wt% MMT induces well-dispersed morphology and properties in the SAN matrix. The TGA analyses show that the thermal stability properties of the SAN/clay nanocomposites have been improved compared with those of the pristine SAN. The DMA results show that the storage modulus and glass transition temperature (Tg) of the SAN/clay nanocomposites have remarkably enhancements compared with the pristine SAN. At last the intercalation mechanism of the technology is discussed.  相似文献   

7.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

8.
Acrylonitrile-modified aliphatic amine adducts are often used as curing agents for room-temperature epoxy formulations (coatings, adhesives, sealants, castings, etc.), yet the curing reaction and properties of resultant epoxy systems still remain less fundamentally understood. Herein we systematically investigate our newly-developed acrylonitrile-modified multifunctional polyamine curing agent for bisphenol A epoxy resin (DGEBA): an acrylonitrile-capped poly(propyleneimine) dendrimer (PAN4). The impact of the molecular structure of PAN4 and a controlled poly(propyleneimine) dendrimer (1.0GPPI) on the curing reactivity, reaction mechanisms, thermal stability, viscoelastic response and mechanical properties of the epoxy systems are highlighted. Differential scanning calorimetry (DSC) confirms DGEBA/PAN4 shows markedly lower reactivity and reaction exotherm than DGEBA/1.0GPPI, and the model-free isoconversional kinetic analysis reveals that DGEBA/PAN4 has the generally lower reaction activation energy. To be quantitative, the progress of the isothermal cure is predicted from the dynamic cure by using the Vyazovkin equation. The isothermal kinetic prediction shows that DGEBA/PAN4 requires about 10 times longer time to achieve the same conversion than DGEBA/1.0GPPI, which agrees with the experimentally observed much longer gel time of DGEBA/PAN4. Subsequently, dynamic mechanical analysis shows that PAN4 results in the cured epoxy network with the lower β- and glass-relaxation temperatures, crosslink density, relaxation activation energy, enthalpy, entropy, but the higher damping near room temperature than 1.0GPPI. Finally, thermogravimetric analysis (TGA) demonstrates cured DGEBA/PAN4 is thermally stable up to 200 °C, and mechanical property tests substantiate that PAN4 endows the cured epoxy with much higher impact and adhesion strengths than 1.0GPPI. Our data can provide a deeper insight into acrylonitrile-modified aliphatic amine curing agents from the two good model compounds (PAN4 and 1.0GPPI).  相似文献   

9.
Graphene nanosheets (GNSs) reinforced poly(butylene succinate) (PBS) nanocomposites are facilely obtained by a solution-based processing method. Graphene nanosheets, which are derived from chemically reduced graphite oxide (GO), are characterized by AFM, TEM, XRD and Raman spectra. The state of dispersion of the GNSs in the PBS matrix is examined by SEM observations that reveals homogeneous distribution of GNSs in PBS matrix. A 21% increase in tensile strength and a 24% improvement of storage modulus are achieved by addition of 2.0 wt% of GNS. The electrical conductivity and thermal stability of the graphene-based nanocomposite are also improved. DSC measurement indicates that the presence of graphene sheets does not have a remarkable impact on the crystallinity of the nanocomposites. Therefore, the high performances of the nanocomposites are mainly attributed to the uniform dispersion of GNSs in the polymer matrix and strong interfacial interactions between both components.  相似文献   

10.
《Composites Part B》2013,44(8):3114-3119
Thick films of nanocomposites made of poly(methyl methacrylate) matrix and colloidal anatase TiO2 nanorods fillers were prepared by solvent mixing and solution drop casting. Different concentrations of nanorods were tested in order to examine the influence of the nanoscale fillers on the composites material properties and structure. The thermal properties of the samples were investigated through thermogravimetric analysis, which showed an increase in thermal stability of the nanocomposites on increasing nanorods concentration, for the range of concentrations used. The viscoelastic properties were investigated through dynamic mechanical analysis, which showed an increase in both the storage and loss modulus on increasing nanorods concentration. The in-depth distribution of the TiO2 nanorods in the matrix was evaluated through cross-sectional transmission electron microscopy, which pointed out a uniform dispersion of mesoscale nanorods agglomerates with increasing diameter of 100–200 nm range on increasing nanorods concentration.  相似文献   

11.
Thick films of nanocomposites made of poly(methyl methacrylate) matrix and colloidal anatase TiO2 nanorods fillers were prepared by solvent mixing and solution drop casting. Different concentrations of nanorods were tested in order to examine the influence of the nanoscale fillers on the composites material properties and structure. The thermal properties of the samples were investigated through thermogravimetric analysis, which showed an increase in thermal stability of the nanocomposites on increasing nanorods concentration, for the range of concentrations used. The viscoelastic properties were investigated through dynamic mechanical analysis, which showed an increase in both the storage and loss modulus on increasing nanorods concentration. The in-depth distribution of the TiO2 nanorods in the matrix was evaluated through cross-sectional transmission electron microscopy, which pointed out a uniform dispersion of mesoscale nanorods agglomerates with increasing diameter of 100–200 nm range on increasing nanorods concentration.  相似文献   

12.
付丽华  贾德民  刘卅 《功能材料》2005,36(10):1638-1644
首次将插层纳米复合技术与互穿聚合物网络(IPN)技术相结合,通过同步插层聚合法制备了聚氨酯/聚甲基丙烯酸甲酯/有机蒙脱土(PU/PMMA/OMMT)纳米复合材料.XRD、SEM、TGA等研究表明,在聚氨酯/有机蒙脱土(PU/OMMT)体系中蒙脱土以40~700 nm的团聚体不均匀地分散在聚氨酯基体中,且部分蒙脱土被插层,其层间距增加了0.95nm,体系为插层型纳米复合材料.PU/PMMA/OMMT体系中蒙脱土以20~80nm的粒子分布于聚合物基体中,且蒙脱土的插层效果显著,是PU/OMMT体系的2.5倍,形成了插层型纳米复合材料.同时,蒙脱土的加入使得聚氨酯和聚甲基丙烯酸甲酯的互穿聚合物网络(PU/PMMA-IPN)体系中PU相与PMMA相间相分离更明显,塑性相畴粒子尺寸显著增加,且各相中两组分相互作用加强,分布更均匀.PU/PMMA/OMMT纳米复合材料的热稳定性高于其他材料.同时对其力学性能进行了研究,发现其力学性能明显优于聚氨酯、基于聚氨酯和PU/PMMA-IPN和PU/OMMT纳米复合材料.  相似文献   

13.
The flammability, thermal stability and mechanical properties of natural fiber-reinforced thermoplastic bio-composites were measured using a horizontal burning test, thermogravimetric analyzer, and universal testing machine, respectively. The composites were fabricated from film resins (Polylactic-acid, PLA and Polypropylene, PP) and natural fibers (coconut filter and jute fiber) by a hot press machine. To improve the flame retardancy of the bio-composites, various diammonium phosphates (DAP) were treated into the fibers. In general, the results indicate that increasing the percentage of DAP used to treat the fibers effectively improves the flame resistant, weight loss rate, and flexural modulus but decreases the flexural and tensile strengths of the bio-composites. Bio-composites with DAP-treated fibers showed a greater flexural modulus than those with untreated fibers, and the flexural modulus was even greater than that of neat polymers (PLA and PP). Also, increasing the percentage of DAP for treatment of the fibers in the composites decreases the temperature required for 5% weight loss and the decomposition rate, but increases the char residual at 500 °C. The best linear burning rate and weight loss rate were observed for fiber treatment with 5% DAP. The compressive and wear properties of these bio-composites were also studied.  相似文献   

14.
The poly (methyl methacrylate) (PMMA)/single-walled carbon nanotube (SWNT) composites with good uniformity, dispersion and alignment of SWNT were fabricated in an improved figuration process. The semidried mixture was stretched along one direction at a drawing ratio of 50 before it was dried, and then folded along the same direction stretching repeatedly for 100 times. The transmission electron microscopic (TEM) observation demonstrated that SWNT in the PMMA/SWNT composite tends to align in the stretching direction owing to a torque exerting on it in the stretching process. The electrical and mechanical properties of PMMA/SWNT composite were studied as a function of SWNT orientation and concentration. The aligned SWNT modified PMMA/SWNT composite presented highly anisotropic properties. The experimental results showed that the electrical conductivity and mechanical properties of composite rise with the increase of SWNT concentration, and that composite films showed higher conductivity and higher mechanical draw ratios along the stretched direction than perpendicular to it. The thermogravimetric analysis (TGA) revealed that embedding the SWNTs into the PMMA matrix also improves the thermal stability of the composite.  相似文献   

15.
Multiwall carbon nanotube (CNT) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been successfully fabricated with melt blending. Two melt blending approaches of batch mixing and continuous extrusion have been used and the properties of the derived nanocomposites have been compared. The interaction of PMMA and CNTs, which is crucial to greatly improve the polymer properties, has been physically enhanced by adding a third party of poly(vinylidene fluoride) (PVDF) compatibilizer. It is found that the electrical threshold for both PMMA/CNT and PMMA/PVDF/CNT nanocomposites lies between 0.5 to 1 wt% of CNTs. The thermal and mechanical properties of the nanocomposites increase with CNTs and they are further increased by the addition of PVDF For 5 wt% CNT reinforced PMMA/PVDF/CNT nanocomposite, the onset of decomposition temperature is about 17 degrees C higher and elastic modulus is about 19.5% higher than those of neat PMMA. Rheological study also shows that the CNTs incorporated in the PMMA/PVDF/CNT nanocomposites act as physical cross-linkers.  相似文献   

16.
The mechanical and thermo-mechanical properties of polybenzoxazine nanocomposites containing multi-walled carbon nanotubes (MWCNTs) functionalized with surfactant are studied. The results are specifically compared with the corresponding properties of epoxy-based nanocomposites. The CNTs bring about significant improvements in flexural strength, flexural modulus, storage modulus and glass transition temperature, Tg, of CNT/polybenzoxazine nanocomposites at the expense of impact fracture toughness. The surfactant treatment has a beneficial effect on the improvement of these properties, except the impact toughness, through enhanced CNT dispersion and interfacial interaction. The former four properties are in general higher for the CNT/polybenzoxazine nanocomposites than the epoxy counterparts, and vice versa for the impact toughness. The addition of CNTs has an ameliorating effect of lowering the coefficient of thermal expansion (CTE) of polybenzoxazine nanocomposites in both the regions below and above Tg, whereas the reverse is true for the epoxy nanocomposites. This observation has a particular implication of exploiting the CNT/polybenzoxazine nanocomposites in applications requiring low shrinkage and accurate dimensional control.  相似文献   

17.
Polylactide-layered silicate nanocomposites with and without a chain extender were prepared by melt mixing using a twin-screw extruder. An organo-modified clay, Cloisite® 30B, and a chain extender Joncryl®-ADR 4368F were employed in this study. The effect of the chain extender and processing conditions on the properties of the PLA-clay nanocomposites were investigated for different strategies of mixing. The resulting nanocomposites were characterized by X-ray diffraction (XRD), while their morphology was observed by SEM and TEM. The incorporation of the chain extender could enhance the degree of clay dispersion provided that it is judiciously added to the nanocomposite. The corresponding results revealed that the Joncryl-based nanocomposites, where nanoclay platelets were well-dispersed, exhibited a significantly reduced permeability as compared to others. The mechanical properties of the neat PLA, the PLA and Joncryl-based nanocomposites were also examined. The increased molecular weight in Joncryl-based nanocomposites caused a significant increase in the modulus, drawability and toughness of the samples.  相似文献   

18.
In this study, phenolic foam (PF)/multi-walled carbon nanotubes (MWCNTs) composites were fabricated by in-situ polymerization, and carbonized foams based on these PF foams were prepared and the electrical property was investigated. TEM results indicated excellent dispersion of MWCNTs in the phenolic resin matrix. Scanning electron microscope results indicated that PF composites exhibited smaller cell size, thicker cell wall thickness, and higher cell density, compared with pure PF. The incorporating of MWCNTs significantly improved the mechanical properties of PF. All PF composites showed a lower thermal conductivity versus pure PF. Moreover, the carbonized pure and composites PF exhibited open-cell three-dimensional skeleton carbon structure and the MWCNTs were well-dispersed on the surface of the skeletons. It is noteworthy that the introduction of MWCNTs significantly improved the electrical performances of foams and carbonized foams by construction of conductive MWCNTs network.  相似文献   

19.
Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods: solution blending and solution blending + melt compounding. The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods. SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all of the PVC/MMT nanocomposites. Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC/MMT nanocomposites prepared by solution blending. Vicat tests revealed a significant decrease in Vicat softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC.  相似文献   

20.
Many holographic techniques have been developed for non-destructive studies and characterization of materials. In this paper, discussion will be made about the employed holographic technique to characterize the poly(methyl methacrylate) (PMMA) matrices doped with azo-dyes. In this manner we were able to study the effect of the thickness of the samples, the effect of concentration of the azo-dyes and of PMMA and the effect of aging (storage time) on the holographic efficiency (diffraction efficiency) of these materials. Auto-erasable holographic gratings have been successfully recorded on azo-dye doped PMMA films and the dynamic diffraction efficiency was monitored with light different from that used for the recording.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号