首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through magnetic arc oscillation process. Taguchi method was employed to optimize the magnetic arc oscillation welding process parameters of non-heat treatable AA 5456 Aluminum alloy welds for increasing the mechanical properties. The same optimum condition was observed in all the properties. Regression models were developed. The effect of welding current, welding speed, amplitude and frequency on mechanical properties was also studied. Analysis of variance was employed to check the adequacy of the developed models. Microstructures of all the welds were studied and correlated with the mechanical properties.  相似文献   

2.
The refinement in weld metal grain size and shape results in both improved mechanical properties (ductility and toughness) as well as a significant improvement in weldability. In the present study, the influence of scandium (Sc) additions to the fillers on the structure and mechanical properties of AA6082 gas tungsten arc (GTA) weldments were investigated. Controlled amounts of scandium as grain refiner were introduced into the molten pool of AA6082 by pre-deposited cast inserts (AA4043 and AA5356) by GTA welding. Full penetration GTA welds were prepared using alternating current (AC). It was observed that grain size decreased with increasing amounts of scandium. The grain refinement is mainly caused by the Al3Sc particles, which act as heterogeneous nucleation of α-Al grains. It has been shown that welds prepared with AA5356 cast insert exhibited high strength and ductility when compared with other welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, strength and ductility. Post-weld aging treatment resulted in improved tensile strength and hardness of the weldments and this aging response could be attributed to the weld dilution from the base metal. The slow diffusion of Sc in Al matrix and stability of Al3Sc precipitates at elevated temperatures were suggested to be responsible for the improved high temperature yield strength of welds made from Sc modified fillers.  相似文献   

3.
High entropy alloy(HEA)-based alloy design is experiencing a conceptual broadening from equiatomic alloys to non-equiatomic alloys.To provide experimental basis for designing Cu-rich non-equiatomic HEAs,in the current study,a dual phase(Cu-rich and CoCrFeNi-rich phases) face-centered cubic CoCrFeNiCu4 alloy was systematically investigated.We provided initial and experiment-based understanding of the behavioral change of the alloy during a variety of thermal cycles and thermomechanical processing.The current results indicate that,during heating,preferred precipitation of Cu-rich particles occurs,leading to more pronounced compositional differences between the two constituent FCC phases and increased relative volume fraction of the Cu-rich phase.The Alloy exhibits a continuous melting and discontinuous solidification of the Cu-rich and CoCrFeNi-rich phases.After being cold-rolled to ~90 % thickness reduction,the alloy exhibits a recrystallization temperature higher than 800℃.Annealing at 300 and 500℃ led to strength reduction and/or ductility decrease;further increasing annealing temperature monotonically caused softening and ductilization due to decreased density of pre-existing dislocations.The yield-drop phenomena observed for the 900℃-and 1000℃-annealed specimens are associated with the locking of pre-existing dislocations by some "atmosphere",the nature of which warrants further elucidation.  相似文献   

4.
Body-centered-cubic (BCC) high entropy alloys (HEAs) usually exhibit high strength but poor ductility. To overcome such strength-ductility trade-off, a novel (FeCr)45(AlNi)50Co5 HEA was presented in this paper, which was designed and fabricated with mechanical alloying (MA) followed by spark plasma sintering (SPS), and has a heterogeneous microstructure with multi-scale precipitates. Electron microscopy characterization revealed that the sizes of the precipitates range from nano (<300 nm), sub-micron (300~800 nm) to micron (>1 μm). The bulk HEA exhibits excellent mechanical properties, of which the compressive yield strength, fracture strength, and plasticity at room temperature can reach 1508 MPa, 3106 MPa and 30.4 %, respectively, which are much higher than that of most HEAs prepared by Powder Metallurgy reported in the literatures, suggesting that the HEA developed is highly promising for engineering applications. The excellent mechanical properties of the bulk HEA can be attributed to that the multi-scale precipitates are fully coherent with the matrix, which could reduce the misfit strain at the interface, and relieve the stress concentration during deformation.  相似文献   

5.
Diamond-like carbon (DLC) films were deposited by a cathodic arc plasma evaporation (CAPD) process, using a mechanical shield filter combined with a magnetic filter with enhanced arc structure at substrate-bias voltage ranging from − 50 to − 300 V. The film characteristics were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). The mechanical properties were investigated by using a nanoindentation tester, scratch test and ball on disc wear test. The Raman spectra of the films showed that the wavenumber ranging from 900 to 1800 cm− 1 could be deconvoluted into 1140 cm− 1, D band and G band. The bias caused a significant effect on the sp3 content which was increased with the decreasing of ID/IG ratio. The XPS spectra data of the films which were etched by H+ plasma indicated the sp3 content are higher than those of the as-deposited DLC films. This implied that there is a sp2-rich layer present on the surface of the as-deposited DLC films. The nanoindentation hardness increased as the maximum load increased. A 380 nm thick and well adhered DLC film was successfully deposited on WC-Co substrate above a Ti interlayer. The adhesion critical load of the DLC films was about 33 N. The results of the wear tests demonstrated that the friction coefficient of the DLC films was between 0.12 and 0.2.  相似文献   

6.
The microstructural features and mechanical properties of AM60 and AZ31 friction stir spot welds are investigated in joints made using different tool designs (threaded and three-flat/threaded tools) and dwell time settings. Since the hook regions are curved inwards towards the keyhole periphery in AM60 friction stir spot welds made using threaded and three-flat/threaded tools and different dwell time settings, the distance from the tip of the hook region to the keyhole periphery mainly determines their failure load properties. In contrast, the hook regions are curved outwards from the axis of the rotating tool in AZ31 friction stir spot welds and their failure strength properties are determined by the bonded width, the distance from the tip of the hook region to the sheet intersection, the depth of tool shoulder penetration into the surface of the upper sheet and the distance from the tip of the hook region to the top of the welded joint.  相似文献   

7.
This paper aimed to investigate the influence of welding technique and temperature on fatigue properties of heat-resistant steel with hardfacing coatings. The plasma transferred arc welding (PTAW) and the oxy-acetylene welding (OAW) were employed. The rotating bending fatigue tests were performed at room temperature (RT) and 500 °C. It was found the fatigue strength with 107 cycles of OAW specimens at RT was lower than that of PTAW ones, possibly resulting from the higher amount of carbides in OAW coatings. The fatigue strength with 107 cycles at 500 °C was higher than that at RT, which was mainly due to the interface delamination and the increase in ductility with increasing temperature. Two failure modes, i.e. the coating failure mode at RT and the coating-interface failure mode at 500 °C, were proposed. The fatigue life was predicted with the model considering the characteristic geometry of inclusions, the average hardness of coating, and the effect of external stress.  相似文献   

8.
The low hardness and poor tribological performance of aluminum alloys restrict their engineering applications. However, protective hard films deposited on aluminum alloys are believed to be effective for overcoming their poor wear properties. In this paper, diamond-like carbon (DLC) films as hard protective film were deposited on 2024 aluminum alloy by arc ion plating. The dependence of the chemical state and microstructure of the films on substrate bias voltage was analyzed by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical and tribological properties of the DLC films deposited on aluminum alloy were investigated by nanoindentation and ball-on-disk tribotester, respectively. The results show that the deposited DLC films were very well-adhered to the aluminum alloy substrate, with no cracks or delamination being observed. A maximum sp3 content of about 37% was obtained at −100 V substrate bias, resulting in a hardness of 30 GPa and elastic modulus of 280 GPa. Thus, the surface hardness and wear resistance of 2024 aluminum alloy can be significantly improved by applying a protective DLC film coating. The DLC-coated aluminum alloy showed a stable and relatively low friction coefficient, as well as narrower and shallower wear tracks in comparison with the uncoated aluminum alloy.  相似文献   

9.
The paper presents the results of research on the microstructure and mechanical properties of T23 steel after long-term ageing up to 70 000 h at the temperature of 550 and 600 °C. It has been shown that the main mechanisms of degradation of the T23 steel microstructure were: recovery of the matrix, disintegration of the bainitic microstructure, growth of carbide diameter and precipitation of M6C carbides. These processes were more advanced in the steel aged at higher temperature. The changes in the microstructure resulted in a 10–15% decrease in mechanical properties (YS, TS) and hardness HV10, and a 30–40% decrease in the impact energy kV. A greater fall of impact strength occurred in the steel aged at the lower temperature. This was ascribed to the segregation of phosphorus to grain boundaries, which has a well-known adverse effect on ductility of low-alloy steels.  相似文献   

10.
Organic-coated aluminum nano-powders were consolidated by spark plasma sintering technique with low initial pressure of 1 MPa and high holding pressure of 300 MPa at different sintering temperature. The effect of sintering temperature on microstructures and mechanical properties of the compact bulks was investigated. The results indicate that both the density and the strain of the nanocrystalline aluminum increase with an increase in sintering temperature. However, the micro-hardness, compressive strength and tensile stress of the compact bulks increase initially and then decrease with increasing sintering temperature. The nanocrystalline aluminum sintered at 773 K has the highest micro-hardness of 3.06 GPa, the best compressive strength of 665 MPa and the supreme tensile stress of 282 MPa. A rapid grain growth of nanocrystalline aluminum sintered at 823 K leads to a decrease in micro-hardness, compressive strength and tensile stress. After annealing, a remarkable increase in strain and a slight rise in strength were obtained due to the relief of the residual stress in nanocrystalline Al and the formation of composite structure.  相似文献   

11.
A new kind of Mg-4.0 wt.%Zn-0.5 wt.%Ca alloy is fabricated by casting and hot extrusion for used as a high performance structure material as well as a biomaterial. In the as-cast alloy, the average grain size of the α-Mg is 120-150 µm and the precipitated second phases are distributed uniformly in α-Mg grains. The as-cast Mg-4.0 wt.%Zn-0.5 wt.%Ca alloy shows a good balance between the tensile strength (211 MPa) and ductility (17% in elongation). After hot extrusion at 593 K, the second phase is greatly refined and the average grain size of the α-Mg is reduced to 8-12 μm which is resulted from dynamic re-crystallization during hot extrusion. In this case, it exhibits a high tensile strength (273 MPa) and a high ductility (34% in elongation) at room temperature.  相似文献   

12.
Abstract

In the present investigation, a nickel based hardfacing alloy (AWS NiCr–B) was deposited on an austenitic stainless steel substrate 316LN using the plasma transferred arc welding process. The deposit was characterised by hardness measurements, microstructural examination and sliding wear assessment. Identification of precipitates was carried out using X-ray diffraction and SEM/EDAX. These studies revealed the presence of chromium rich carbides and borides in a γ-Ni matrix. Down to a distance of 1 mm from the interface, the hardness of the deposit was found to be 52 HRC. The sliding wear behaviour of the hardfacing alloy was investigated in air in the room temperature to 550°C range, with a pin on disk configuration using a cylindrical pin with tip radius of 3 mm under loads of 30, 40 and 50 N. Wear experiments were conducted up to a sliding distance of 180 m at a sliding speed of 0·1 m s?1. The elastic modulus and Poisson's ratio of the hardfaced deposits were evaluated by the ultrasonic method and these values were used for calculating initial Hertzian contact stress. The study showed that, while significant wear loss occurred at room temperature, there was practically no measurable weight loss at temperatures of 300 and 550°C. This could be attributed to the formation of an oxide layer at the surface during wear testing.  相似文献   

13.
The Ti–30Zr–5Al–3V (wt.%, TZAV-30) alloy having good mechanical properties is a potential structural material to apply in the aerospace industry. The microstructure and mechanical properties of ZTAV-30 alloy underwent various annealing heat treatments were investigated. The specimens annealed from 500 to 800 °C are composed of α and β two phases. No compound is detected in specimens annealed in that temperature range. The microstructure of annealed specimens is characterized as a typical basketweave microstructure. Three microstructural parameters, thickness of plate α phase, relative fraction of β phase and aspect ratio of α grains, were measured in those annealed specimens. As the alloy annealed in the range from 500 to 800 °C, the average thickness of plate α grains increases with the increasing annealing temperature from 500 to 700 °C but decreases while annealed at 800 °C. The fraction of retained β phase increases with annealing temperature. And the aspect ratio of plate α grains decreases firstly but increases while the annealing temperature is higher than 700 °C. As the variation of those three microstructural parameters, the strength of examined alloy varies from 1269 to 1355 MPa for tensile strength and from 1101 to 1190 MPa for yield strength, inversely, the elongation changes in the range from 12.7% to 8.4%. The strengthening and toughening mechanism of the TZAV-30 alloy with basketweave microstructure is also discussed in this paper.  相似文献   

14.
A zirconium carbide ceramic was hot pressed to full density thanks to the addition of TaSi2, which enabled the densification to occur at 1970 K and improved the mechanical properties as compared to monolithic ZrC. The microstructure was analysed by combined X-ray diffraction, scanning and transmission electron microscopy to investigate the effective role of the sintering additive. In addition, high temperature oxidation was performed using the reactor REHPTS (Réacteur Hautes Pression et Température Solaire) from 1800 to 2200 K for 20 min and this composite demonstrated to resist towards the highly oxidative conditions better than other carbides, thanks to the chemical modification of the oxide formed upon Ta addition. However from 2000 K, the specimen resulted very damaged.  相似文献   

15.
In this study,the microstructure and tensile properties of selective laser melted AlSilOMg at elevated temperature were investigated with focus on the interfacial region.In-situ SEM and in-situ EBSD analysis were proposed to characterize the microstructural evolution with temperature.The as-fabricated AlSilOMg sample presents high tensile strength with the ultimate tensile strength(UTS)of~450 MPa and yield strength(YS)of~300 MPa,which results from the mixed strengthening mechanism among grain boundary,solid solution,dislocation and Orowan looping mechanism.When holding at the temperature below 200℃for 30 min,the micro structure presents little change,and only a slight decrement of yield strength appears due to the relief of the residual stress.However,when the holding temperature further increases to 300℃and 400℃,the coarsening and precipitation of Si particles inα-Al matrix occur obviously,which leads to an obvious decrease of solid solution strength.At the same time,matrix softening and the weakness of dislocation strengthening also play important roles.When the holding temperature reaches to 400℃,the yield strength decreases significantly to about 25 MPa which is very similar to the as-cast Al alloy.This might be concluded that the YS is dominated by the matrix materials.Because the softening mechanism counteracts work hardening,the extremely high elongation occurs.  相似文献   

16.
为改善激光熔化沉积TC31高温钛合金力学性能,本文通过光学显微镜、SEM、TEM和力学性能测试的方法研究了退火温度对合金中组织演化行为的影响,及其与合金室温和650 ℃高温力学性能的关系。结果表明:组织中初生α相含量随着退火温度升高而降低,其溶解主要发生在950 ℃以上,980 ℃退火后含量仅为29%。当退火温度超过930 ℃时,初生α相片层宽度明显增加。随着退火温度升高,α/β界面处析出的(Ti, Zr)6Si3相尺寸增加,且进入α相片层内部。合金在800~1 000 ℃退火时,合金室温拉伸屈服强度随退火温度升高趋于降低。受相界面析出的硅化物聚合长大及α相片层尺寸增加等因素影响,合金高温屈服强度随退火温度升高先降低后增加。合金经过1 000 ℃退火后,呈现良好的高温性能,其650 ℃下抗拉强度达657 MPa、屈服强度约为466 MPa、延伸率27%。  相似文献   

17.
Radial forging(RF)is an economical manufacturing forging process,in which four dies arranged radially around the workpiece simultaneously act on the workpiece with high-frequency radial movement.In this study,a ZK60 magnesium alloy step-shaft bar was processed under different accumulated strains by RF at 350℃.The deformation behavior,microstructure evolution,and mechanical responses of this bar were systematically investigated via numerical simulations and experiments.At the early deformation stage of forging,the material undergoes pronounced grain refinement but an inhomogeneous grain structure is formed due to the strain gradient along the radial direction.The grains in different radial parts were gradually refined by increasing the RF pass,resulting in a bimodal grained structure comprising coarse(~14.1 μm)and fine(~2.3 μm)grains.With the RF pass increased,the initial micro-size β-phases were gradually crushed and dissolved into the matrix mostly,eventually evolving to form a higher area fraction of nano-sized Zn2Zr spheroidal particles uniformly distributed through the grain interior.The texture changed as the RF strain increased,with the c-axes of most of the deformed grains rotating in the RD.Additionally,excellent mechanical properties including higher values of tensile strengths and ductility were attained after the three RFed Dasses,compared to the as-received sample.  相似文献   

18.
Al-Si-Ni-Ce alloys with the composition of Al78.5Si19Ni2Ce0.5, Al76Si19Ni4Ce1 and Al73Si19Ni7Ce1 were atomized and then sintered by using spark plasma method. The microstructure of the as-atomized powders, sintered and hot-extruded samples was analyzed. The influences of granularity and sintering parameters including time and temperature on the density of sintered alloy were also discussed. It is shown that the atomized powders are composed of Si, Al11Ce3, Al3Ni and alpha Al. Tiny Al3Ni particles precipitate from supersaturated matrix near the powder boundaries during SPS. Hot-extrusion process leads to the layer structure and more homogeneous distribution of precipitates. These alloys exhibit high comprehensive mechanical properties with combination of high Vicker's micro-hardness, moderate tensile properties and elongation, which provide a novel kind of promising engineering materials.  相似文献   

19.
Abstract

This study details the development of microstructure of Ti14 alloy as a function of the forging temperature and forging ratio in semisolid state and influence of resulting microstructure on the mechanical properties. The results reveal that dynamic recrystallisation occurred during semisolid forging, and the grain refinement was attained. Grain size increased in the forging temperature and decreased in the forging ratio. High ultimate tensile strengths and low elongation have been achieved after semisolid forging. The strength decreased with increasing forging temperature, while the ductility increased with increasing forging ratio. The relative contributions of tensile properties were attributed to the varieties of grain size obtained by thixoforging.  相似文献   

20.
In the present work, aluminium alloy AA2024-T3 thin sheets were joined by the Friction Stir Welding – FSW – process. Butt joints were obtained in 1.6 mm sheets, using an advancing speed of 700 mm/min. These joints were characterised by optical, scanning electron microscopy, tensile and fatigue mechanical tests. The results showed that the resulting microstructure is free of defects and the tensile strength of the welded joints is up to 98% of the base-metal strength. Fatigue tests result indicates an equivalent stress intensity factor (kt) of approximately 2.0 for the welded samples. Consequently, the FSW process can be advantageous compared to conventional riveting for airframe applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号