首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K1.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.  相似文献   

2.
Microstructures and micro-textures of X2095 Al–Li alloy in as-received/superplastic state were characterized by means of SEM/BDS, X-ray diffraction and orientation imaging microscopy (OIM). It was observed that the microstructure of the alloy was typical of a particulate-reinforced composite material, consisting of aluminum matrix and homogeneously distributed TB(Al7Cu4Li) particles with a volume fraction of about 10%. Brass-type texture was the dominant texture component. Both constant amplitude and near-threshold fatigue crack growth rates of the alloy in the L–T and T–L orientations were determined at different stress ratios. Particular attention was paid to the role of the TB phase in the fatigue crack growth. When a fatigue crack approached a TB particle, the crack basically meandered to avoid the particle. The TB particles thus provided a strong resistance to the propagation of fatigue crack by promoting crack deflection and the related crack closure effects. The fatigue crack propagation behavior has been explained by the microstructural features, micro-textures, cracking characteristics and crack closure effects.  相似文献   

3.
In this paper R-ratio effects on fatigue crack growth near threshold region of a metastable austenitic stainless steel (MASS) in two different conditions, i.e. annealed and cold rolled, is investigated. The authors present two approaches to correlate FCGR data for R = 0.1, 0.3, 0.5, 0.7 and Kmax = 23 MPa√m using a two-parameters approach (ΔK, Kmax and α in Kujawski’s model) and crack closure model (using Elber’s Kop and in Donald’s ACRn2 approaches). The Kop and ACRn2 were experimentally measured on a single edge tension specimens. The Kop measurements were performed using a modified method and based on ASTM standards. While the two driving force approaches correlate data well in the Paris region, they fail to correlate them in the threshold region. However, this correlation can be improved in the threshold region when a different α value from the Paris region is used. The authors indicated that two different mechanisms operate; one in the Paris region and another in the near threshold. Hence, they proposed to combine the two-parameter and crack closure approaches where ΔK is replaced by ΔKeff (estimated by a new method proposed in this paper), which is shown to correlate the FCGR data for different stress ratios for annealed steel. The correlation for cold rolled condition shows improvement with the new approach but is not as good as for the annealed one. The author further suggests to modify Kmax in the two-parameter approach.  相似文献   

4.
Fatigue crack growth test of AZ61 magnesium alloy was carried out under immersed NaCl environment at frequencies of 15, 5 and 0.5 Hz under a stress ratio of 0.1. In order to investigate the effect of frequency on fatigue crack growth behavior in detail, additional tests at frequencies ranged from 15 to 0.01 Hz were conducted under a constant ΔK of 3.25 MPa m1/2. Effect of frequency was clearly observed in low ΔK region, where fatigue crack growth rate decreased with decreasing frequency. Crack closure would be a dominant factor for the frequency effect observed under immersed NaCl environment at frequencies ranged from 15 to 0.5 Hz. However, fatigue crack growth rates at frequencies lower than 0.05 Hz were higher than those at frequencies higher than 0.5 Hz. The accelerated fatigue crack growth rates at frequencies lower than 0.05 Hz would be attributed to the corrosion attack at the crack tip.  相似文献   

5.
The fatigue crack propagation behavior of Ti–5Al–2.5Fe with various microstructures for biomedical applications was investigated in air and in a simulated body environment, Ringer's solution, in comparison with that of Ti–6Al–4V ELI and that of SUS 316L stainless steel. The crack propagation rate, da/dN, of Ti–5Al–2.5Fe in the case of each microstructure is greater than that of the Widmanstätten structure in Ti–6Al–4V ELI in air whereas da/dN of Ti–5Al–2.5Fe is nearly equal to that of the equiaxed structure in Ti–6Al–4V ELI in air when da/dN is plotted versus the nominal cyclic stress intensity factor range, ΔK. da/dN of the equiaxed structure and that of the Widmanstätten structure in Ti–5Al–2.5Fe are nearly the same in air when da/dN is plotted versus ΔK. da/dN of Ti–5Al–2.5Fe is nearly equal to that of SUS 316L stainless steel in the Paris Law region, whereas da/dN of Ti–5Al–2.5Fe is greater than that of SUS 316L stainless steel in the threshold region in air, when da/dN is plotted versus ΔK. da/dN of Ti–5Al–2.5Fe or Ti–6Al–4V ELI is nearly the same in air and in Ringer's solution when da/dN is plotted versus the effective cyclic stress intensity factor range, ΔKeff, whereas da/dN of Ti–5Al–2.5Fe or Ti–6Al–4V ELI is greater in Ringer's solution than in air when da/dN is plotted versus ΔK.  相似文献   

6.
This paper analyzes the overload retardation effect (ORE) on the fatigue crack growth (FCG) of cold drawn prestressing steel when different loading sequences are used. The ORE is more intense for elevated load decrease or for low initial stress intensity factor (SIF) range ΔK0. A transient stage can be observed in the Paris curve (da/dN–ΔK) when the KmaxΔK value suddenly decreases, associated with the ORE and with the evolution of the plastic zone and compressive residual stresses near the crack tip. In tests with Kmax decrease, a small zone appears related to FCG initiation, with a fatigue fractography resembling the tearing topography surface (TTS) mode, and associated with a decrease of crack tip opening displacement (CTOD).  相似文献   

7.
Experiments to investigate the effect of hydrogen pressure and test frequency on the fatigue crack growth properties of a Ni–Cr–Mo steel for the storage cylinder of a 70 MPa hydrogen storage station were conducted. Compact tension specimens were cut out from the storage cylinder. The crack growth properties obtained in hydrogen gas were compared with those obtained in air. Higher hydrogen pressures and lower loading frequencies lead to faster crack growth. However, there is an upper limit to the acceleration of the fatigue crack growth rate in hydrogen gas, which can be used for the design of the hydrogen cylinder. The effect of long and large inclusions present in the steel was also verified. The observations carried out on specimen fracture surfaces showed that the low population of inclusions did not influence the fatigue crack growth rate.  相似文献   

8.
AISI304 steel welded joints are used in cold‐stretched liquefied natural gas (LNG) storage tanks used for storing and transporting of liquefied gases. Compared with a conventional liquefied natural gas storage tank, a cold‐stretched liquefied natural gas storage tank has many advantages such as reduced thickness, light weight, low cost and low energy consumption. However, liquefied natural gas storage tanks can be subjected to alternative loads at cryogenic temperatures; thus, it is important to investigate the fatigue crack propagation behavior in AISI 304 steel welded joints at cryogenic temperatures. Specimens were machined from a cold‐stretched liquefied natural gas storage tank with a welding structure. The crack length was determined using compliance method and confirmed by examination with traveling microscope. Fatigue crack propagation rates were evaluated at various stress ratios and temperatures. The fatigue crack growth rate of all specimens a little appears the effect of stress ratio, but it has a great influence at a cryogenic temperature. The fatigue crack growth rate of longitudinal welded joint is the fastest at room and cryogenic temperature. Fracture mechanism in the specimen is examined using a scanning electron microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号