首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties of an Al-5.8%Mg alloy quenched and aged for 24 hat 393 and 433 K have been investigated in the temperature range 293-573 K to assess the effect of aging temperature on deformation in the presence of precipitation. The results indicate that at a constant strain rate the ductility increases with test temperature, reaches a maximum value and then decreases to a minimum value, followed by a further increase at higher temperatures. The temperatures corresponding to the minimum ductility, the elevated 0.2% yield strength and the ultimate tensile strength were found to be dependent on the starting material conditions. The variations in the yield and ultimate tensile strength, parabolic stress-strain relationship and work-hardening index were recorded as functions of experimental variables. Electron microscopy revealed that the loss in ductility of the alloy can be attributed to the precipitation of MnAl6, Mg2Al3 and MgsAl3 or MgsAlB, whose size, quantity and morphology depend on the experimental conditions. An attempt has been made to correlate strength, ductility and structural changes at elevated temperatures.  相似文献   

2.
In situ Al3Ti/Al–5.5Cu composites fabricated by powder metallurgy and subsequent forging were subjected to multiple pass friction stir processing (FSP) with and without active cooling. The forged sample exhibited lower strength and ductility due to the presence of coarse Al3Ti clusters with a size range of 50–100 μm and coarse matrix grains. Four-pass FSP in air resulted in the refinement and redistribution of the Al3Ti clusters, and the generation of micron matrix grains, thereby increasing the strength and ductility of the composites. Furthermore, coarse Al2Cu particles dissolved and re-precipitated due to a relatively long duration of thermal exposure. Additional two pass FSP with rapid water cooling (FSP-water) dissolved most of the Al2Cu into the matrix and retained the solutes in solution due to the short duration of thermal exposure. Meanwhile, ultrafine matrix grains with a high density of dislocations were obtained. These microstructural changes led to significant increase in strength and a decrease in ductility in the FSP-water sample. After aging, the FSP-water sample exhibited further increased yield strength and ultimate tensile strength due to the precipitation of metastable Al2Cu phases. However, the ductility did not decrease due to the decrease of dislocation density after aging.  相似文献   

3.
Al and TiO2 powders were selected to fabricate in situ Al composites via multiple pass friction stir processing (FSP) based on the thermodynamic analysis. The microstructural investigations indicated FSP would induce reaction between Al and TiO2. Al3Ti and Al2O3 particles were formed after 4 pass FSP with 100% overlapping. The in situ particles were about 80 nm in size at various FSP conditions, and ultrafine matrix grains 602 nm in size were obtained when water cooling was applied during FSP. Tensile tests indicated that the in situ nanocomposites exhibited pronounced work hardening behavior and a good combination of strength and ductility.  相似文献   

4.
ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were fabricated using solidification processing followed by hot extrusion and T5 heat treatment. Agglomeration of Al2O3 nanoparticles was observed in the nanocomposites. However, in the case of ZK60A/1.0 vol%Al2O3 nanocomposite (compared to monolithic ZK60A), increase in tensile strength (up to 14%) without significant decrease in ductility and simultaneous increase in compressive strength (up to 12%) and ductility (+23%) were observed. Here, the strength of ZK60A was increased without significant decrease in ductility. On the other hand, in the case of ZK60A/1.5 vol%Al2O3 nanocomposite (compared to monolithic ZK60A), simultaneous increase in tensile strength (up to 6%) and ductility (+26%), but decrease in compressive strength (up to 40%) with increase in ductility (+43%) were observed. Here, the ductility of ZK60A was significantly increased without significant increase in strength. This tailoring of tensile and compressive properties of ZK60A via integration with Al2O3 nanoparticles are investigated in this article.  相似文献   

5.
A comparative study of the microstructure, mechanical properties and fractography of Ni3Al macro- and microalloyed intermetallics produced by powder metallurgy (PM) and standard vacuum melting and casting processes has been carried out. Non-porous PM compacts were obtained by vacuum hot pressing of powders produced either by gas atomization or by a rotating electrode process. All materials showed a positive temperature dependence of the compression yield strength. The maximum strength was attained between 600 and 700 °C, then the decrease occurs. With increase in temperature the ductility of all materials slightly decreased to a minimum and then abruptly increased. Values of mechanical properties of PM compacts were higher than those of as-cast material. There is a correlation between the fracture morphology and the ductility of Ni3Al, i.e. the higher ductility corresponds to transgranular fracture, while the minimum ductility is a consequence of intergranular fracture.  相似文献   

6.
Mechanical properties of aged Al-5.8% Mg alloy at 423 and 473 K, over the ageing time range 1–35 h, have been investigated to assess the effect of ageing temperature on deformation in the presence of precipitation. The results indicate that the 0.2% yield strength, ultimate tensile strength, flow stress, work hardening exponent and ductility increase with ageing time reaching a maximum value, and then decrease to minimum value, followed by an increase at longer ageing times. The variation in yield, ultimate tensile strength, work hardening exponent of the flow, as well as the hardness at different degrees of deformation, were recorded as functions of experimental variables. Electron microscopic investigations revealed that the strengthening and loss in ductility of the alloy may be attributed to the precipitation of different shapes of MnAl6, Mg2Al3 and ɛ-Mg23Al30, whose size, quantity and morphology depend on the experimental conditions. An attempt has been made to correlate strength, ductility and structural changes at different ageing times. The Brinell hardness increases and the recrystallization temperature decreases with deformation. From parabolic stress-strain relation, the σ-ɛ1/2 curves could be divided into two linear parts.  相似文献   

7.
Polypropylene (PP) composites with 5 wt% of different rigid particles (Al2O3 nanoparticles, SiO2 nanoparticles, Clay (Cloisite 20A) nanoparticles or CaCO3 microparticles) were obtained by melt mixing. Composites with different CaCO3 content were also prepared. The effect of fillers, filler content and addition of maleic anhydride grafted PP (MAPP) on the composites fracture and failure behavior was investigated. For PP/CaCO3 composites, an increasing trend of stiffness with filler loading was found while a decreasing trend of strength, ductility and fracture toughness was observed. The addition of MAPP was beneficial and detrimental to strength and ductility, respectively mainly as a result of improved interfacial adhesion. For the composites with 5 wt% of CaCO3 or Al2O3, no significant changes in tensile properties were found due to the presence of agglomerated particles. However, the PP/CaCO3 composite exhibited the best tensile behavior: the highest ductility while keeping the strength and stiffness of neat PP. In general, the composites with SiO2 or Clay, on the other hand, displayed worse tensile strength and ductility. These behaviors could be probably related to the filler ability as nucleating agent. In addition, although the incorporation of MAPP led to improved filler dispersion, it was damaging to the material fracture behavior for the composites with CaCO3, Al2O3 or Clay, as a result of a higher interfacial adhesion, the retardant effect of MAPP on PP nucleation and the lower molecular weight of the PP/MAPP blend. The PP/MAPP/SiO2 composite, on the other hand, showed slightly increased toughness respect to the composite without MAPP due to the beneficial concomitant effects of the presence of some amount of the β crystalline phase of PP and the better filler dispersion promoted by the coupling agent which favor multiple crazing. From modeling of strength, the effect of MAPP on filler dispersion and interfacial adhesion in the PP/CaCO3 composites was confirmed.  相似文献   

8.
《Scripta Metallurgica》1989,23(8):1277-1280
The incorporation of B4C particulates into 7091 Al alloy can improve the tensile modulus, yield strength and tensile strength of the monolithic matrix alloy. However, the ductility and fracture toughness need to be improved through optimization of processing parameters. The fracture was primarily along article/matrix interface.  相似文献   

9.
Aluminum matrix nanocomposites were fabricated via friction stir processing of an Al–Mg alloy with pre-inserted TiO2 nanoparticles at different volume fractions of 3%, 5% and 6%. The nanocomposites were annealed at 300–500 °C for 1–5 h in air to study the effect of annealing on the microstructural changes and mechanical properties. Microstructural studies by scanning and transmission electron microscopy showed that new phases were formed during friction stir processing due to chemical reactions at the interface of TiO2 with the aluminum matrix alloy. Reactive annealing completed the solid-state reactions, which led to a significant improvement in the ductility of the nanocomposites (more than three times) without deteriorating their tensile strength and hardness. Evaluation of the grain structure revealed that the presence of TiO2 nanoparticles refined the grains during friction stir processing while the in situ formed nanoparticles hindered the grain growth upon the post-annealing treatment. Abnormal grain growth was observed after a prolonged annealing at 500 °C. The highest strength and ductility were obtained for the nanocomposites annealed at 400 °C for 3 h.  相似文献   

10.
Some experimental investigations on ductility and prediction of minimum flexural reinforcement in reinforced concrete (RC) beams are reported. The minimum flexural reinforcement was evaluated using optimum ductility in RC beams. Beams of size 100 mm, 200 mm and 400 mm were tested, which were designed with varying percentages of flexural reinforcement i.e. 0.15, 0.30, 0.60 and 1.0. The beams were tested under four-point loading to study the flexural behaviour under uniform bending moment. The experimentally obtained average compressive strength of concrete was 30 MPa. The influence of beam size (depth) on cracking and normalised ultimate flexural strength, ductility and overall average rotation has been studied. The cracking in RC beams is complex phenomenon in small size beams, while the cracking strength decreases as the depth increases beyond 200 mm. The flexural strength of RC beams, from the present study, appears to decrease as the depth increases. The ductility of RC beams increases as the percentage of flexural reinforcement increases. The ductility number has been derived from dimensional analysis using fracture mechanics principles. The ductility of RC beams decreases as the depth of beams increases. An optimum percentage of flexural reinforcement has been established using optimum ductility number, Np, which is equal to 0.20. The minimum flexural reinforcement was found to decrease as the beam depth increases, and decreases as the yield strength of reinforcement increases.  相似文献   

11.
A series of Al25 ? xCr25 + 0.5xFe25Ni25 + 0.5x (x = 19, 17, 15 at%) multi‐component alloys are prepared by arc‐melting and rapid solidification of copper molds. The technique of thermal‐mechanical processing is further applied to the master alloys to improve their mechanical properties. These alloys consist of face‐centered cubic (FCC) and body‐centered cubic (BCC) structure. The volume fraction of the BCC phase increases as Al content increase and Cr and Ni contents decrease, accompanied with a microstructural evolution from dendritic structure to lamella‐like structure. Due to the increase of volume fraction of BCC phase, the master alloys exhibit an increased strength and a declined ductility as Al content increases. The rapid solidified alloys have more BCC phase compared with the master alloys, which enhances the strength and decreases the ductility. After homogenization, hot‐rolling, and annealing at 1000 °C, the Al8Cr33.5Fe25Ni33.5 alloy displays excellent combination of strength (yield strength is ~635 MPa and fracture strength is ~1155 MPa) and ductility (tension strain is ~11%).
  相似文献   

12.
The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys.  相似文献   

13.
Extruded Mg–6%Al–1%Zn (AZ61) alloy bar was subjected to 4-pass Equal Channel Angular Extrusion (ECAE) processing at 448–573 K. At the processing temperature of 448 K, extremely fine grains with the average grain size of 0.5 mm are formed as a result of dynamic recrystallization originated by fine Mg17Al12 (b) phase particles having 50–100 nm diameter dynamically-precipitated during ECAE processing. The sizes of both α matrix and β phase decrease with decreasing processing temperatures. In tensile test at room temperature under the strain rate of 1×10—3 s—1, tensile strength increases with decreasing ECAE processing temperatures due to fine grains, fine precipitates and residual strain hardening. Especially, highest strength of 351 MPa was achieved in the specimen ECAE-processed at 448 K. In addition to such high strength, elongation reaches 33% in that specimen. This specimen exhibits clear strain rate dependencies of both flow stress and elongation even at room temperature. As a result, higher elongation of 67% is obtained under low strain rate of 1×10—5 s—1.In such specimen, non-basal slip and grain boundary sliding occur in addition to basal slip. Furthermore, there are grains with no dislocations, suggesting the occurrence of dynamic recovery. The contribution of all the deformation mechanisms would cause high ductility in fine-grained AZ61 alloy specimen with high strength.  相似文献   

14.
Microstructure and mechanical properties of Fe3Al alloys with chromium   总被引:1,自引:0,他引:1  
Alloys based on Fe3Al have an equilibrium DO3 structure at low temperatures and transform to a B2 structure above about 550°C. The influence of different rates of quenching from the B2 region to room temperature and of subsequent heat treatments on the microstructure and mechanical properties of powder metallurgy (P/M) alloys with two different chromium contents have been examined. Optimizing the processing to maximize the amount of B2 order, without eliminating dislocations that enhance both strength and ductility, yields room-temperature ductility approaching 20%, although the fracture mode is primarily brittle cleavage. The B2 structure generally has lower flow stress than the DO3 structure because of its lower strain-hardening rate, although B2 order actually has higher yield strength when the structure is free of dislocations. Increasing the chromium content from 2% to 5% has little effect on ductility, although the 2% Cr alloys generally have higher yield strengths and larger order parameters.  相似文献   

15.
We demonstrate that bulk nanoscale materials with high strength and high ductility can be synthesized by using long-range ordering in certain alloy systems. In the case of a Ni-18.6 atomic % Mo-15.1 atomic % Cr, a bulk nanoscale superlattice of Ni2(Cr,Mo) isomorphous with Pt2Mo has been synthesized by thermal aging at 700 °C. The superlattice is shown to have high strength and high ductility as well as high thermal stability. Although the yield strength is nearly doubled in the ordered state exceeding 800 MPa, the material is found to maintain about 70% of its initial tensile ductility corresponding to 42% engineering strain. This behavior has been related to the crystallography of the ordering transformation. Although most of the slip systems of the parent face-centered cubic lattice are suppressed by ordering, most of the twinning systems remain energetically favorable. Therefore, deformation in the ordered state is found to predominantly occur by twinning rather than by slip giving rise to the observed combination of high strength and high ductility.  相似文献   

16.
Particulate metal matrix composites (PMMCs) have attracted interest for application in numerous fields. The current processing methods often produce agglomerated particles in the ductile matrix and as a result these composites exhibit extremely low ductility. The key idea to solve the current problem is to adopt a novel Rheo-process allowing the application of sufficient shear stress (τ) on particulate clusters embedded in liquid metal to overcome the average cohesive force or the tensile strength of the cluster. In this study, cast A356/SiCp composites were produced using a conventional stir casting technique and a novel Rheo-process. The microstructure and properties were evaluated. The adopted Rheo-process significantly improved the distribution of the reinforcement in the matrix. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (ε) is obtained.  相似文献   

17.
This study is aimed at understanding the toughness enhancing function of nanoparticles in magnesium nanocomposites, focussing on experimentally observed nanoparticle–matrix interactions during physical deformation. Al2O3 nanoparticles were selected for reinforcement purposes due to the well known affinity between magnesium and oxygen. AZ31/AZ91 (hybrid alloy) and ZK60A magnesium alloys were reinforced with Al2O3 nanoparticles using solidification processing followed by hot extrusion. In tension, each nanocomposite exhibited higher ultimate strength and ductility than the corresponding monolithic alloy. However, the increase in ductility exhibited by ZK60A/Al2O3 (+170%) was significantly higher than that exhibited by AZ31/AZ91/Al2O3 (+99%). The previously unreported and novel formation of high strain zones (HSZs, from nanoparticle surfaces inclusive) during tensile deformation is highlighted here as a significant mechanism supporting ductility enhancement in ZK60A/Al2O3 (+170% enhanced) and AZ31/AZ91/Al2O3 (+99% enhanced) nanocomposites. Also, ZK60A/Al2O3 exhibited lower and higher compressive strength and ductility (respectively) compared to ZK60A while AZ31/AZ91/Al2O3 exhibited higher and unchanged compressive strength and ductility (respectively) compared to AZ31/AZ91. Here, the previously unreported nanograin formation (recrystallization) during room temperature compressive deformation as a toughening mechanism in relation to nanoparticle stimulated nucleation (NSN) ability is also highlighted.  相似文献   

18.
Abstract

Selective laser sintered Rapidsteel parts were sintered and infiltrated with Cu-10 at.-%Sn, in two different atmospheres (e.g. 30%H2-70%N2 and vacuum with a partial pressure of 200 mbar of Ar). The processing atmospherehada significant effect on the mechanical properties of the infiltrated parts. The parts intered/infiltrated in a 30%H2-70%N2 atmosphere, exhibited a tensile strength of 780 MPa and a ductility of 4.45%. However, the tensile strength was reduced moderately to 650 MPa while the ductility was increased significantly to 11.7% by changing the sintering/infiltration atmosphere from 30%H2-70%N2 to vacuum + Ar. Furthermore, the parts processed in a vacuum + Ar atmosphere exhibited a better fracture resistance than parts processed in 30%H2- 70%N2. The improvement in ductility and fracture resistance for parts processed in vacuum + Ar atmosphere was primarily due to the elimination of nitrides. For both cases, ductile fracture occurred in stainless steel particulate and striation was found in the bronze infiltrant.  相似文献   

19.
In this paper, a practical and cost‐effective processing route, in situ reactive infiltration technique, was utilized to fabricate magnesium matrix composites reinforced with a network of TiC–TiB2 particulates. These ceramic reinforcement phases were synthesized in situ from Ti and B4C powders without any addition of a third metal powder such as Al. The molten Mg alloy infiltrates the preform of (Tip + B4Cp) by capillary forces. The microstructure of the composites was investigated using scanning electron microscope (SEM)/energy dispersive X‐ray spectroscopy (EDS). The compression behavior of the composites processed at different conditions was investigated. Also, the flexural strength behavior was assessed through the four‐point‐bending test at room temperature. Microstructural characterization of the (TiB2–TiC)/AZ91D composite processed at 900 °C for 1.5 h shows a relatively uniform distribution of TiB2 and TiC particulates in the matrix material resulting in the highest compressive strength and Young's modulus. Compared with those of the unreinforced AZ91D Mg alloy, the elastic modulus, flexural and compressive strengths of the composite are greatly improved. In contrast, the ductility is lower than that of the unreinforced AZ91D Mg alloy. However, this lower ductility was improved by the addition of MgH2 powder in the preform. Secondary scanning electron microscopy was used to investigate the fracture surfaces after the flexural strength test. The composites show signs of mixed fracture; cleavage regions and some dimpling. In addition, microcracks observed in the matrix show that the failure might have initiated in the matrix rather than from the reinforcing particulates.  相似文献   

20.
This review presents an investigation on effects of the processing conditions on the microstructural evolution and mechanical properties of commercial pure titanium processed by Equal Channel Angular Pressing (ECAP). An overview of ECAP processing is presented. A discussion on the microstructure evolution of ECAPed titanium emphasising effects of the ECAP-route type, processing temperature, number of ECAP passes, and mechanical/thermal treatments is presented. Moreover, the variations of the mechanical properties (yield strength, tensile strength, and ductility) of titanium as functions of the grain size are reported for the different conditions of ECAP processing. In addition, the best estimates of the Hall–Petch parameters for titanium processed by ECAP, ECAP followed by mechanical and/or thermal annealing are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号