首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陆胜  罗泽举  刘锬 《机床与液压》2008,36(5):325-327
研究了一种模糊神经网络轧辊磨表面粗糙度智能预测及控制的方法,轧辊磨削精度和表面质量指磨削过程中的加工精度、表面粗糙度和物理机械性能,而表面粗糙度是其中最主要的一个因素.提出的基于模糊神经网络的轧辊磨表面粗糙度智能预测方法对于在轧辊磨削工艺中研究基于模糊神经网络的表面粗糙度预测,对于如何在加工过程中辨识表面粗糙度及时作出砂轮动作的调整,保证轧辊磨削质量有重要意义.同时由于可以实现砂轮表面粗糙度的在线控制与调整,提高了轧辊磨削的生产率.  相似文献   

2.
基于全因子实验设计,进行了轴向超声振动车削实验,研究了6061铝合金轴向振动车削参数(切削速度、背吃刀量、进给量)对表面粗糙度的影响,并对表面粗糙度进行了预测。对实验数据进行极差分析、切削用量交互作用分析,得到了各切削参数对表面粗糙度的影响。基于多元回归法与指数函数法分别建立了表面粗糙度预测模型,对预测模型进行显著性检验,并与测试实验结果相对比。实验结果表明,指数函数预测模型可以更好地对表面粗糙度进行预测,预测精度较高,对6061铝合金轴向振动车削参数的选择提供了依据。  相似文献   

3.
谢楠  周俊锋  郑蓓蓉 《表面技术》2018,47(9):240-249
目的提出一种考虑能耗的多传感器融合加工表面粗糙度预测方法,精确预测零件表面粗糙度。方法首先采集车削过程中的功率和振动信号,测量加工表面粗糙度值,利用集成经验模态分解(Ensemble empirical mode decomposition,EEMD)和小波包分析提取振动信号的时域与频域特征,联合功率信号的时域特征、能耗特征与切削参数,构造联合多特征向量。然后采用核主成分分析(Kernel principal component analysis,KPCA)对联合多特征向量进行融合降维处理生成融合特征。最后将融合特征作为基于支持向量机(Support vector machine,SVM)的表面粗糙度预测模型的输入特征,并使用遗传算法(Genetic algorithm,GA)对SVM模型相关核参数进行优化以提高预测精度。结果预测得到的表面粗糙度平均相对误差为4.91%,最大误差为0.111μm,预测时间为9.24 s。与单传感器预测方法及多传感器联合特征预测方法相比,多传感器融合预测方法具有最高的准确率且预测速度快。结论多传感器采集的信息更全面、准确,保证了预测的准确性,对特征进行融合可进一步提高预测精度。  相似文献   

4.
针对滚动轴承剩余寿命(RUL)预测中自动故障边界识别精度不足与构建的健康因子单调性和趋势性不够理想的问题:提出一种基于集成迁移学习的滚动轴承剩余寿命预测方法。首先,利用源域数据协助标记不足的目标域数据训练具有不同激活函数的多个深度信念网络(DBN),选用预测精度最佳的DBN识别故障边界;其次,将经过训练的DBN作为特征提取器迁移到目标域,利用主成分分析(PCA)将提取的特征进行降维构建轴承健康因子,通过集成策略构建集成的健康因子;最后,采用长短时记忆神经网络作为预测模型。采用XJTU-SY滚动轴承数据集进行验证表明,提出的方法能够有效地识别故障边界和构建的健康因子更好地反映退化趋势,同时提高剩余寿命预测准确度。  相似文献   

5.
磨削质量在线监测方法研究   总被引:1,自引:1,他引:1  
在理论分析和试验研究的基础上,提出了一种在线监测磨削表面粗糙度的新方法,该方法从声发射(AE)传感器探头与磨削表面摩擦产生的AE信号中提取有关磨削表面粗糙度的信息量,利用神经网络实现磨削表面粗糙度的在线智能检测和预报。并通过实际跟踪测试和计算机仿真对该方法的可行性进行了分析。结果表明,该方法可行,可用于磨削质量的在线监测。  相似文献   

6.
基于PCA-SVM方法的点焊质量评估   总被引:1,自引:1,他引:0       下载免费PDF全文
张宏杰  侯妍妍 《焊接学报》2009,30(4):97-100
通过对电阻点焊过程电极位移和动态电阻信号的实时采集和时域特征分析,利用电阻信号动态特征刻画熔核形成不同阶段,从同步电极位移信号中提取9个特征参量建立输入样本数据集.以焊点接头抗剪强度作为焊点质量的评价指标,将PCA(主成分分析)方法与传统的SVM(支持向量机)回归分析相结合,利用PCA方法对支持向量机的输入样本数据集进行主成分分析,消除了输入特征参量间的自相关性,实现数据降维后作为支持向量机的输入,建立焊点质量映射模型.交叉有效性预测结果表明,基于PCA-SVM的算法增强了SVM的泛化能力,比传统的SVM算法具有更高的预测精度.  相似文献   

7.
基于RBF神经网络的磨削表面粗糙度预测模型   总被引:1,自引:0,他引:1  
工件表面粗糙度是反映表面完整性指标中极为重要的一个参数,也是衡量磨削加工质量的重要因素之一,准确地预测磨削表面粗糙度对于快速合理地选择磨削加工工艺参数具有重要意义。通过开展实际磨削实验获得磨削加工数据,对获取的样本数据进行归一化处理以适应RBF神经网络的学习。同时采用循环算法比较得出隐层的最优神经元个数,最终建立了基于径向基函数神经网络的磨削表面粗糙度预测模型,并利用MATLAB进行仿真预测。仿真结果表明:该预测模型准确率很高,能为表面粗糙度预测研究提供可靠数据。  相似文献   

8.
目的利用粒子群优化BP神经网络建立大理石加工表面粗糙度精确预测模型。方法首先采用不同切削参数进行铣削大理石试验,测量加工表面粗糙度值,同时对粒子群算法进行改进,使惯性权重按指数形式递减,并增加速度扰动系数,利用改进粒子群算法优化BP神经网络,建立铣削大理石表面粗糙度神经网络预测模型。其次使用部分试验数据来训练预测模型,使得到的网络参数让网络可以精确预测表面粗糙度。最后利用其余试验数据验证神经网络预测模型的准确性与可靠性。结果经过计算得到粒子群优化BP网络算法的预测模型归一化均方差为0.0501,最大相对误差为10.78%,且误差变化较为均匀。经验公式模型归一化均方差为0.1069,最大相对误差为39.64%,误差变化幅度较大。结论将神经网络模型与经验公式相比较,结果表明,所建网络模型具有较高的预测精度与较强的鲁棒性,对合理选择切削用量以得到理想表面粗糙度有一定参考价值。  相似文献   

9.
文章主要介绍了运用回归分析方法建立氢化锂车削表面粗糙度预测模型的方法。通过所建立的粗糙度预测模型,研究了车削过程中切削速度、进给量、切削深度对表面粗糙度的影响。经加工试验证明了该表面粗糙度预测模型的有效性,从而实现加工前在确定切削条件下预测和控制表面粗糙度的目的。  相似文献   

10.
针对磨削过程中能耗预测及低能耗加工问题,提出了一种基于改进遗传算法的磨削能耗预测及工艺参数优化方法。首先,基于多元非线性拟合回归理论建立了表面粗糙度和磨削能耗的预测模型,并验证了预测模型的准确性;其次,遗传算法中将能耗预测模型作为目标函数,表面粗糙度预测模型作为约束条件,并采用改进的十进制编码解码和染色体三点同时变异方式进行工艺参数寻优;最后,通过实验数据验证了多元非线性拟合回归预测模型的准确性和求解算法的有效性。实验结果表明:该方法预测的工艺参数理论值可实现磨削加工中能耗最小化。  相似文献   

11.
针对6061Al铣削中表面粗糙度预测精度低、切削参数选择不合理的问题,提出一种基于遗传神经网络与遗传算法结合的优化模型,对6061Al切削参数进行优化。采用遗传神经网络(GA-BP)构建表面粗糙度预测模型;基于表面粗糙度预测,以材料去除率为目标函数构建切削参数优化模型;利用遗传算法进行优化求解,对6061Al切削参数进行优化。研究结果表明:所建预测模型表面粗糙度预测精度在97%以上;同时,优化模型能优化6061Al切削参数,达到较好的全局寻优效果,为铝合金工件铣削加工切削参数优化提供参考。  相似文献   

12.
目的 针对多种表面粗糙度影响因素的耦合作用使轮廓形成机理不清,导致表面粗糙度数学模型存在表面质量智能管控工业应用预测精度不足的技术难题,建立端面铣削工件表面粗糙度数学模型。方法 首先,基于加工运动学机理和刀具几何学分析端面铣削工件表面轮廓形成机理,建立考虑刀具跳动的工件表面轮廓模型以及轮廓高度偏差关于铣削力的补偿函数,并通过卷积神经网络(Convolution Neural Network,CNN)进行解析。其次,建立端面铣削表面粗糙度数学模型。最后,进行可转位面铣刀端面铣削ZG32MnMo的实验验证,分别采集轮廓数据与铣削力信号,建立以铣削力为输入、轮廓高度偏差数据为输出的铣削数据集,训练卷积神经网络解析轮廓高度补偿值并验证理论模型的准确性,对比分析考虑刀具跳动的表面粗糙度数学模型与CNN优化考虑刀具跳动的表面粗糙度数学模型的精度。结果 CNN优化考虑刀具跳动的表面粗糙度数学模型对加工重叠区与非重叠区内沿刀具进给方向的轮廓算术平均偏差Ra的预测误差分别为18.71%和14.14%,与考虑刀具跳动的表面粗糙度数学模型相比,精度分别提高了10.61%和32.83%,CNN优化考虑刀具跳动的表面粗糙度数学模型对轮廓单元的平均宽度Rsm和支承长度率Rmr(c)的预测结果与实验值吻合。结论 考虑刀具跳动以及动态铣削力耦合作用边界条件的表面粗糙度数学模型能够有效预测端面铣削表面粗糙度,可为在质量管控工程中的应用提供理论指导与技术支撑。  相似文献   

13.
高速铣削TC4表面粗糙度预测模型研究   总被引:1,自引:0,他引:1  
零件表面粗糙度的影响因素具有复杂性和不确定性,切削参数是能够人为控制并对零件的表面质量有较大影响的因素之一。为了优选合适的切削参数以达到提高零件表面加工质量的目的,通过设计正交试验并在此基础上建立了钛合金TC4高速铣削表面粗糙度的GRNN广义回归神经网络预测模型和经验回归模型,对其预测误差进行了比较分析。结果表明:所建立的GRNN预测模型较回归预测模型有更高的预测精度,能够更好的对表面粗糙度进行动态控制。  相似文献   

14.
径向基函数神经网络在高速铣削表面粗糙度预测中的应用   总被引:1,自引:0,他引:1  
应用RBF神经网络建立了高速铣削模具型腔时已加工表面粗糙度的预测模型,预测值与实测值非常接近,预测精度略高于回归模型的精度.利用该模型对高速铣削表面粗糙度进行了预报,并分析了工艺参数的影响规律,验证了模型对质量监测及工艺参数优化的可行性及实用性.结果表明,通过合理选择工艺参数,尤其在控制切削深度和切削宽度的情况下,可获得Ra0.3 μm以下的已加工表面粗糙度.  相似文献   

15.
基于模糊神经网络的表面粗糙度建模研究   总被引:1,自引:0,他引:1  
根据零件表面粗糙度形成的复杂性,提出了一种基于模糊神经网络的表面粗糙度预测建模方法,并以外圆车削加工为例,建立了车削加工参数与工件表面粗糙度的预测模型。试验表明,所提出的模糊神经网络建模方法可对零件表面粗糙度进行有效预测。  相似文献   

16.
目的 实现硬态车削过程中每个产品零件白层现象的实时在线检测,提高产品生产加工效率和加工质量,提出一种基于梯度提升决策树的硬态车削加工工件表面白层预测方法。方法 首先,利用功率传感器、声发射传感器和振动传感器采集硬态车削过程中的动态切削信号数据,并对上述各种传感器信号数据进行特征提取;然后,结合特征重要性分析和梯度提升决策树建立硬态车削加工表面白层预测模型;最后,基于混淆矩阵提出一套评估梯度提升决策树模型预测性能的评价方法。结果 与功率、振动信号等特征相比,声发射信号特征能够进一步提升模型的白层预测性能。实验结果表明,该方法的预测准确率达到90%,F1为92%,Auc为89%,与SVM、XGBoost分类方法所得结果相比,该方法能更准确有效地实现硬态车削加工工件表面白层现象的在线预测。结论 该方法基于智能传感技术和梯度决策树模型对硬车过程中产生的白层现象进行了有效预测识别,对实现硬车过程白层现象的在线智能预测具有重要意义。  相似文献   

17.
为便于选取合适的切削参数,以满足期望的加工表面质量要求,提出一种最小二乘支持向量机(LSSVM)和粒子群优化(PSO)相结合的表面粗糙度预测模型。以预测精度和收敛速度为指标,对比PSO-LSSVM模型与支持向量机、人工神经网络和遗传算法优化BP神经网络模型的优劣。结果表明:PSO-LSSVM模型具有较高的预测精度和较快的收敛速度。基于MATLAB GUI搭建了表面粗糙度预测与参数优化应用系统。该系统具有较好的实用性,可实现简单、快速预测表面粗糙度,帮助决策人员灵活选取切削参数。  相似文献   

18.
为了明确加工状态及切削参数对细长轴类零件切削表面粗糙度的影响规律,通过刀具切削刃与工件表面形貌的几何映射关系,推导轴向截面的轮廓曲线方程,得出不同切削参数下的理论表面粗糙度值;对比分析不同加工状态、切削参数下细长轴切削表面粗糙度数据。结果表明:稳定切削时,细长轴工件的振动以主轴转频及其倍频为主,加工表面粗糙度受进给量影响最大,粗糙度随进给量的增大而增大,工件刚度较大时理论粗糙度与实测结果误差较小;当颤振发生时,工件振动信号中出现与其固有频率接近的高频振动成分,此时粗糙度理论预测结果与实测结果误差较大。理论模型中应充分融合工艺系统的振动信息,可进一步提高预测模型的精度与适用范围。  相似文献   

19.
现有的机器视觉测量表面粗糙度的方法依赖于特征提取来量化表面形态并建立预测模型,并且图片样本采集时高度依赖光源环境和拍摄角度。提出利用Swin-Transformer模型直接从表面纹理的数字图像中评估表面粗糙度并进行分类,避免了特征提取。实验中采用了不同的光源亮度和不同的角度进行拍摄,旨在模拟工业生产在线检测的环境。实验分类结果表明该方法对光源和拍摄角度具有良好的鲁棒性,测试集样本准确率可达97.54%。  相似文献   

20.
为探究纵-扭超声振动对陶瓷磨削表面几何形貌的影响,以ZrO2陶瓷为研究对象,通过正交对比试验,以磨削表面粗糙度值为评价指标,采用多元线性回归分析法,建立普通磨削(OG)及纵-扭超声磨削(L-TUG)材料表面粗糙度拟合模型,研究工艺参数对表面粗糙度作用的主次顺序及影响程度;同时利用BP神经网络预测模型进行L-TUG表面粗糙度的优化求解。结果表明:在L-TUG中,主轴转速对粗糙度值影响最大,超声能量影响最小;在OG中,磨削深度对粗糙度值影响最大,主轴转速影响最小。BP神经网络模型预测误差在1.070%~9.396%内,且最优磨削参数组合获得的表面质量最好,可实现对L-TUG表面粗糙度值较高精度的智能预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号