首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用两步水热法,结合高温煅烧工艺,制备了直接生长在泡沫Ni基底上的C包覆CoMoO_4复合纳米片阵列材料。利用X射线衍射仪(XRD)、能谱仪(EDS)和场发射扫描电子显微镜(SEM)分析C包覆CoMoO_4的结构特征,结果表明C成功包覆在多孔交联CoMoO_4纳米片的表面。通过循环伏安法和恒流充放电法分析C包覆CoMoO_4的电化学性能,发现C包覆显著提高CoMoO_4的比电容和循环性能。在1A/g的电流密度下循环2000次,最高比电容达1864.79F/g,比电容保持率86.65%。比电容和循环性能的改善是由于碳包覆提高了CoMoO_4电导率和结构稳定性,促进了赝电容反应。  相似文献   

2.
利用共沉淀法合成MnCO_3微球与Li_2CO_3进行固相反应制备了尖晶石LiMn_2O_4微球。通过吡咯在LiMn_2O_4表面上进行化学氧化聚合合成了聚吡咯包覆LiMn_2O_4微球(PPy@LiMn_2O_4)。聚吡咯包覆层不仅可以提高LiMn_2O_4微球的电子导电率,而且其本身像一个电容器。这种结构特点有利于提高LiMn_2O_4的容量,倍率性能和高倍率循环稳定性。通过循环伏安(CV)、交流阻抗(EIS)和恒流充放电等方法测试了电极材料的电化学性能,研究表明:PPy@LiMn_2O_4显示了比LiMn_2O_4微球更好的电化学储锂性能,包括高比容量(118.4 mA·h·g~(-1))、高倍率性能(5C,104.5 mA·h·g~(-1))。  相似文献   

3.
通过化学共沉淀法制备SnSb纳米合金,并以此为主体材料表面包覆石墨烯的核壳结构复合材料SbSn/rGO用作钠离子电池负极材料。通过XRD、SEM、EDS测试分析材料的物相结构与形貌,通过循环伏安、恒流充放电测试分析材料的电化学性能。研究表明,SbSn/rGO复合材料缓解了SnSb纳米合金团聚和体积膨胀效应,增强了材料的循环稳定性和倍率性能。SbSn/rGO复合材料150 mA·g~(-1)电流密度及0~3 V充放电电压测试,首次充放电容量为650、700 mA·h·g~(-1),第50次循环的放电比容量保持在350 mA·h·g~(-1),大幅度提高钠电负极材料比容量和循环稳定性。  相似文献   

4.
为了抑制穿梭效应,提高锂硫电池的电化学性能,采用一步法制备聚吡咯/硫的复合材料。以过硫酸铵作为氧化剂、乙醇作为分散剂,用化学氧化聚合法制备导电聚吡咯的同时,原位沉积包覆硫,研究过硫酸铵和吡咯单体以不同氧化比反应制备聚吡咯/硫复合材料,并用SEM和TEM测试观察材料的形貌,用恒流充放电测试材料的电化学性能。结果表明:当过硫酸铵与吡咯以1∶1复合时,得到的聚吡咯/硫复合材料有较好的形貌;组装的电池在0.1 C的恒电流充放电测试下,初始放电比容量可以达到943.3 m A·h/g,循环20圈后,放电比容量仍然保持在747.9 mA·h/g,并且每圈的库伦效率都大于97%,表现出了较好的充放电性能和循环稳定性。  相似文献   

5.
以钼酸钠和硫代乙酰胺为原料,水为溶剂,采用水热法制备出具有优异电化学性能的花瓣状MoS_2纳米结构。研究了制备过程中反应温度、时间对产物形貌及电化学性能的影响。利用X射线衍射(XRD)、扫描电子显微镜(SEM)对产物的微观结构和形貌进行了表征,并对其电化学性能及反应过程机理进行了研究。结果表明:在水热温度为200℃,反应时间为28h条件下,所制备产物的结晶性最好,组成花瓣状的片层结构堆垛最为有序;以该花瓣状MoS_2作为铝离子电池正极材料,在充放电电流密度为10 mA·g~(-1)时,首次放电容量达到127.8mA·h·g~(-1),循环80圈后,其放电容量依然保持在44.4mA·h·g~(-1),上述结果表明,所制备产物具有优异的电化学性能和良好的循环稳定性。  相似文献   

6.
以四水合乙酸镍为原料、硫代乙酰胺为沉淀剂和硫源,采用一步溶剂热法合成了介孔富有的多孔NiS中空亚微球。并采用XRD、FESEM、EDS、TEM、HRTEM、SAED、XPS和氮气吸脱附测试以及循环伏安(CV)、恒流充放电、交流阻抗等进行了材料表征和电化学性能测试。研究结果表明,所合成的NiS为介孔富有的多孔中空亚微球结构,且其尺寸大小较为均匀,壳层较薄。这种独特的多孔中空结构使得其作为超级电容器电池型正极材料时表现出优异的电化学性能:3 A·g~(-1)电流密度下的比容量值为155.4mA·h·g~(-1),20 A·g~(-1)电流密度下的比容量值仍然保持在92.9 mA·h·g~(-1),倍率容量保持率为59.8%,且在5 A·g~(-1)电流密度下5 000次循环后比容量仍可达115.3 mA·h·g~(-1),初始容量保持率为85.0%。  相似文献   

7.
采用水浴法在泡沫镍基底上生长MnO_2/Ni(OH)_2复合纳米片阵列材料,并通过恒流充放电和循环伏安法研究所得MnO_2/Ni(OH)_2的电化学性能。利用X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)分析产物的物相组成和微观形貌。结果表明:泡沫镍基底表面垂直生长着多孔纳米片阵列,纳米片间围成150~300nm的小孔;在电流密度为200mA/g时,所得纳米片阵列材料的首次放电比容量可达1575.4mAh/g,库伦效率为95.6%,100次循环材料的平均放电比容量达到1052.2mAh/g;这表明该复合材料具有较高的比容量和良好的循环性能。  相似文献   

8.
通过溶剂蒸发法制备了甲壳胺(CTS)/双金属硝酸盐复合膜(MN-NO_3),经氮气氛高温煅烧与空气氛回火,制备了氮掺杂的部分石墨化碳(N-PGC)/过渡金属氧化物(TMOs)复合材料,考察其作为超级电容器电极材料的电化学性能。分别研究了金属离子种类、浓度以及煅烧温度对产物结构及电化学性能的影响。实验结果表明:当金属离子与CTS的质量比为9/80时,制得的N-PGC/CoAl-TMOs复合材料在2A·g~(-1)电流密度下比电容为462.2F·g~(-1),经过500次充放电循环,复合物比电容保留率为91.9%;电流密度增加到10A·g~(-1)时,其比电容为424.6F·g~(-1),具有良好的倍率特性和循环稳定性;金属含量过高时,产物易发生团聚,导致比表面积下降;当煅烧温度为800℃时,N-PGC/TMOs复合材料性能最佳。  相似文献   

9.
采用化学脱合金法制备了具有纳米多孔结构的SnSb合金材料,并将其应用于钠离子电池的负极.电化学性能测试结果表明,与SnSb颗粒相比,这种具有孔道与韧带双连续结构的合金负极具有高的放电比容量、优良的循环性能和倍率性能.在50 mA·g~(-1)的电流密度下首次放电比容量为419.9 mAh·g~(-1);25次循环之后容量可达264.3 mAh·g~(-1);在150 mA·g~(-1)的放电倍率下,其放电比容量仍可达350.2 mAh·g~(-1).  相似文献   

10.
为研究聚吡咯(PPy)含量对Fe_2O_3/PPy负极材料电化学性能的影响,以FeCl_2·4H_2O为Fe源,采用水热法合成Fe_2O_3纳米片,用原位聚合法合成不同PPy含量的Fe_2O_3/PPy复合材料,并通过X-射线衍射和扫描电子显微镜对合成的材料进行表征;将材料组装成扣式电池,采用恒流充放电、循环伏安法和交流阻抗测试进行电化学性能表征.结果表明:PPy的加入改善了Fe_2O_3的循环稳定性,其中PPy质量分数为5.0%的Fe_2O_3/5.0%PPy负极材料的循环性能最好,在200 mA/g的电流密度下,首次放电比容量为1 342.3 mA·h/g,首次库仑效率达到75.1%;经过100次循环,其放电比容量保持为487.4 mA·h/g,高于Fe_2O_3/2.5%PPy、Fe_2O_3/7.5%PPy和Fe_2O_3的放电比容量.  相似文献   

11.
通过共沉淀法合成的球形Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2前驱体与LiOH·H_2O均匀混合,经高温固相反应合成了层状结构球形LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2。利用扫描电子显微镜(SEM)对不同形成时间的球形前驱体形貌观察,结果表明:Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2前驱体是由无数微小的纳米片由内而外竖向聚集而形成的二次颗粒,其形成经历了由疏松逐渐变致密的过程。经过高温锂化之后,一次结构由纳米层片转变为纳米颗粒,球状二次颗粒形貌未发生明显改变。X-射线衍射(XRD)测试结果表明:与普通溶胶凝胶法的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2样品相比,球形LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2具有更加完整的层状结构。充放电测试结果表明:球形LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2具有更高的比容量、更好的循环稳定性、更好的倍率性能。球形LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2在0.2C(1C=160mA·g~(-1))时的放电容量达到186.2mA·h·g~(-1),0.5C时达到158.9mA·h·g~(-1),1C时达到129.0mA·h·g~(-1),100次循环后仍然可以保留88.9%的容量。  相似文献   

12.
为改善SnO_2作为锂离子电池负极材料的电化学表现性能,利用溶剂热法制备SnO_2纳米颗粒,通过球磨法将SnO_2与多孔导电碳和石墨烯掺杂制得SnO_2/石墨烯/多孔碳复合材料,并研究了掺杂不同比例多孔碳的复合材料的电化学性能。结果表明:含15.79%多孔碳的SnO_2/石墨烯/多孔碳复合材料性能最好,初始可逆容量达1 221 m Ah·g~(-1);拥有良好的循环稳定性,在200 m A·g~(-1)电流密度下循环50次后,放电容量维持在834 m Ah·g~(-1);在100,200,400,800,1 600 m A·g~(-1)电流密度下,放电容量分别为1 221,1 093,993,796,526 m Ah·g~(-1),表现出良好的倍率性能。适量的多孔碳结合层状石墨烯形成特殊的物理结构,强化了SnO_2在充放电过程中的结构稳定性,进而提高了其电化学循环稳定性;石墨烯/多孔碳复合材料的掺杂提高了锂离子电池负极材料SnO_2的导电性,同时提高了其电化学性能。  相似文献   

13.
采用溶剂热法制备片状Co(CO3)0.5(OH).0.11H2O前驱物,经400℃煅烧2 h即可得到多孔Co3O4纳米片.通过场发射扫描电镜(FESEM)和透射电镜(HRTEM)观测了纳米片的形貌,利用X射线衍射(XRD)分析了纳米片的结构,通过循环伏安、恒流充放电和交流阻抗测试了材料的电化学电容性能.结果表明:多孔Co3O4纳米片厚度约为50 nm,孔径主要分布在10 nm左右;0.5 A/g恒流充放电情况下,比容量高达707 F/g,当电流密度高达8 A/g时比容量依然高达547 F/g;同时,该材料循环1 000次后,容量保持率为97.4%.  相似文献   

14.
以油酸同时作为表面活性剂和碳源,通过简单的方法制备了不同碳含量的超细Li_2MnSiO_4@C纳米颗粒。扫描电镜(SEM)和透射电镜(TEM)照片显示样品颗粒非常均匀且粒径非常小,只有10~20nm。当油酸加入量与LiOH的物质的量的比为2∶1时,得到的Li_2MnSiO_4@C纳米材料(LMS2)电化学性能最好;在0.05C的倍率下,材料的首次放电容量达到313mA·h·g~(-1),经过50个循环后,放电比容量仍保持为154.7mA·h·g~(-1)。材料优异的电化学性能可归因于其具有极小的粒径、疏松多孔的结构和较高的电导率。  相似文献   

15.
以MnO_2/PAN/DMF为前驱体,通过静电纺丝和惰性气氛下退火处理制备出MnO/C纳米纤维,对样品进行了XRD、SEM以及电化学性能分析。结果表明:制得的复合膜纤维直径为300~500 nm;其中MnO_2添加量为1.0g时制得的纳米纤维膜的形貌和性能最理想,当电流密度为1.0 A·g~(-1)时,经过200个循环,容量仍然保持在320mA·h·g~(-1);在电流密度3.0 A·g~(-1)下,可逆容量为201 mA·h·g~(-1),展现了极好的倍率性能和循环性能。  相似文献   

16.
采用锌金属有机配合物(MOF-5)煅烧得到的多孔碳材料作为阴极材料,以锌箔作为阳极,硫酸锌中系水溶液作为电解液构建了锌离子复合电容器。在电化学性能测试中,锌离子复合电容器表现出了优异的电化学性能,如高放电比容量(在1 A·g~(-1)的电流密度下放电比容量为55 mAh·g~(-1)),良好的倍率性能,高能量密度(46 Wh·kg~(-1)),优异的循环稳定性(在1 A·g~(-1)的电流密度下进行8 000次充放电循环后,锌离子复合电容器的放电比容量保持率接近100%)。  相似文献   

17.
采用水热法合成了WO_3/rGO纳米复合材料,并将其用作锂离子电池负极材料。水热处理过程中将氧化石墨烯(GO)还原转变成了还原型氧化石墨烯(rGO),氧化石墨烯经还原后会产生不饱和的、共轭的碳原子,表面缺陷增加从而活性位点增加,使电导率显著增加。结果显示:所制备的WO_3/rGO纳米复合材料中,WO_3均匀地负载到了rGO纳米片上。电化学测试表明:所获得的WO_3/rGO纳米复合材料首次放电比容量达到1 135.7mA·h·g~(-1);200圈以后依然能够保持较高的放电比容量(780mA·h·g~(-1))。  相似文献   

18.
聚苯胺纳米纤维的界面聚合法合成及电化学电容行为   总被引:2,自引:0,他引:2  
利用盐酸和四氯化碳的水/油两相界面,通过界面聚合法合成具有良好纳米纤维结构的聚苯胺,用这种聚苯胺纳米纤维为活性物质制备电极,以1mol/LH2SO4水溶液为电解液组装超级电容器,通过恒电流充放电、循环伏安、交流阻抗等技术研究其电化学电容行为。研究结果表明,合成的聚苯胺的直径为50~100nm,长度为500nm至几微米不等,且纤维之间相互交织缠绕,形成网状形貌;聚苯胺纳米纤维电极材料的功率特性与循环性能优于用传统化学氧化法合成的颗粒状聚苯胺材料的性能,在5mA放电电流下,其比电容可达317F/g,20mA放电电流下比电容仍维持300F/g左右,500次循环容量衰减在4%以内。  相似文献   

19.
通过简单的低温水热反应法制备了瓜状介孔Fe_2O_3微晶,经多巴胺聚合包覆和热处理后得到瓜状介孔Fe_3O_4/氮掺杂碳(N-C)复合物。将其作为锂离子电池负极材料的活性物质,组装成锂离子电池进行性能测试。瓜状介孔Fe_3O_4/N-C复合物展示出了较高的倍率性能(1 A·g~(-1)电流密度下放电比容量大于770 mAh·g~(-1))和优异的循环稳定性能(在2 A·g~(-1)电流密度下能够循环稳定1500圈而没有明显的容量损失),这主要得益于介孔结构和氮掺杂碳包覆双重作用。介孔结构提供了较大的活性物质与电解液接触面积,提高了锂离子扩散能力。同时为电极材料放电过程中体积膨胀提供充足的空间,提高了循环稳定性。氮掺杂碳包覆提高了电子导电能力,有利于电子快速转移,从而提高倍率性能。碳包覆也能够阻止微粒之间的相互聚集和结构塌陷,提高循环稳定性。  相似文献   

20.
为了抑制锂碘(Li-I_2)电池充放电过程中碘单质的溶解穿梭效应和自放电效应,提高Li-I_2电池的循环稳定性,以多孔活化石墨烯(AG)为载体,采用溶液吸附法制备了碘-活化石墨烯(I_2-AG)复合材料。结构测试结果表明,AG为三维层状堆积的疏松多孔结构,具有较高的比表面积、丰富的纳米孔结构和大孔容,有利于活性物质碘的负载及充放电过程中离子的传输。电化学测试结果表明,I_2-AG复合材料表现出了优良的电化学循环和倍率性能,具体表现为I_2-AG复合材料在1、2、5和20 C倍率下的放电比容量分别为325.3、302、293.3和270.4 mA h g~(–1),循环500周后,其剩余放电比容量分别为220.6、209.9、234.7和274.3mA h g~(–1)。整体而言,制备的I_2-AG复合材料有效地抑制了碘单质的溶解穿梭效应和自放电效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号