首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coal bursts are typically associated with highly stressed coal.Most bursts occur during retreat mining(longwall mining or pillar recovery) in highly stressed locations like the tailgate corner of the longwall panel.Others are associated with multiple seam interactions.However, a small but significant percentage of coal bursts have occurred during development or in outby locations unaffected by active mining.Most development bursts have been relatively small, but some have been highly destructive.No theory of coal bursts can be complete if it does not account for this type of event.This paper focusses on the development mining coal burst experience in the US, putting it into the context of the entire US coal burst database.The first documented development coal burst occurred almost exactly 100 years ago during slope drivage at the Sunnyside Mine in Utah.Sunnyside subsequently had a long history of bursts, mainly during retreat mining but also during development.Several Colorado mines have also experienced multiple development bursts.Many, but by no means all, of the development bursts in these western US coalfields have been associated with known faults.In the Central Appalachian coalfields, most development bursts have occurred in multiple seam situations.In some of these cases, however, there was no retreat mining in either seam.The paper closes with some lessons from this history, with implications for preventing such events in the future.  相似文献   

2.
Longwall mining has existed in Utah for more than half a century. Much of this mining occurred at depths of cover that significantly exceed those encountered by most other US longwall operations. Deep cover causes high ground stress, which can combine with geology to create a coal burst hazard. Nearly every longwall mine operating within the Utah's Book Cliffs coalfield has been affected by coal bursts. Pillar design has been a key component in the burst control strategies employed by mines in the Book Cliffs.Historically, most longwall mines employed double-use two-entry yield pillar gates. Double-use signifies that the gate system serves first as the headgate, and then later serves as the tailgate for the adjacent panel. After the 1996 burst fatality at the Aberdeen Mine, the inter-panel barrier design was introduced.In this layout, a wide barrier pillar protects each longwall panel from the previously mined panel, and each gate system is used just once. This paper documents the deep cover longwall mining conducted with each type of pillar design, together with the associated coal burst experience. Each of the six longwall mining complexes in the Book Cliffs having a coal burst history is described on a panel-by-panel basis.The analysis shows that where the mining depth exceeded 450 m, each design has been employed for about 38000 total m of longwall panel extraction. The double-use yield pillar design has been used primarily at depths less than 600 m, however, while the inter-panel barrier design has been used mainly at depths exceeding 600 m. Despite its greater depth of use, the inter-panel barrier gate design has been associated with about one-third as much face region burst activity as the double-use yield pillar design.  相似文献   

3.
Coal burst represented a major hazard for some U.S. mining operations. This paper provides an historical review of the coal burst hazards,identifies the fundamental geological factors associated with these events,and discusses mechanisms that can be used to avoid their occurrences. Coal burst are not common in most underground mines. Their occurrence almost always has such dramatic consequences to a mining operation that changes in practice are required. Fundamental factors influencing coal burst events include strong strata,abnormal strata caving,elevated stresses,critical size pillars and the lack of sufficiently sized barrier pillars during extraction. These factors interact to produce excessive stress,seismic shock and loss of confinement mechanisms. Over the 90 years of dealing with these hazards,many novel prevention controls have been developed including novel mine designs and extraction sequences,most of which are site specific in their application. Without an accurate assessment of the fundamental factors that influence coal burst and knowledge of their mechanisms of occurrence,control techniques may be misapplied and risk inadequately mitigated.  相似文献   

4.
Safety is the highest priority in the mining industry as underground mining in particular poses high safety risks to its workers. In underground coal mines, coal bursts are one of the most catastrophic hazards, which involves sudden and violent dynamic coal mass failure with rapid ejection of the broken material into the mine workings. Despite decades of research, the contributing mechanisms of coal bursts are still not completely understood. Hence, it remains challenging to forecast coal bursts and quantify their likelihood of occurrence. However, a range of geological and geotechnical factors are associated with coal bursts and can increase the coal burst proneness. This paper introduces a semi-quantitative coal burst risk classification system, namely, BurstRisk. Based on back-analysis of case histories from Australia, China and the United States, BurstRisk classifies the coal burst risk into three categories:low, medium and high risk. In addition, it allows mining engineers to modify the weighting of the selected factors based on specific conditions. The risk classification charts introduced are for both longwall retreat and development sections of long-wall mining operations. This paper also provides a set of risk management strategies and control measures for effective coal burst mitigation.  相似文献   

5.
为了解决大采深条带开采坚硬顶板工作面的冲击矿压问题,以古城煤矿2106工作面为例,采用现场分析、实验室试验、数值模拟的方法对其发生机理进行了研究.结果表明在此条件下开采时发生的冲击矿压与煤岩性质、采深、坚硬顶板厚度及顶板的周期来压有密切关系.当冲击矿压发生的煤层具有强冲击倾向性,煤层硬度系数大于3、采深900 m以上、顶板岩层坚硬且厚度大于20 m时,冲击矿压发生具有突然性和猛烈性;主要发生在顶板周期来压期间、超前支护50m范围内,此时工作面的CH4和CO气体含量同时升高.对此提出了钻屑法等预测预报的方法和煤体爆破卸压与柔性支护等治理措施.  相似文献   

6.
In this study, we established a dynamic ejection coal burst model for a coalmine roadway subject to stress, and held that the stress concentration zone at the roadway side is the direct energy source of this ejection. The formation and development of such burst undergoes three stages:(1) instability and propagation of the cracks in the stress concentration zone,(2) emerging of a layered energy storage structure in the zone, and(3) ejection of coal mass or coal burst due to instability. Moreover, we figured out the initial strength of periodic cracks is parallel to the maximal dominant stress direction in the stress concentration zone and derived from the damage strain energy within the finite area of the zone based on the Griffith energy theory. In addition, we analyzed the formation process of the layered energy storage structure in the zone, simplified it as a simply supported restraint sheet, and calculated the minimum critical load and the internally accumulated elastic energy at the instable state. Furthermore, we established a criterion for occurrence of the coal burst based on the variational principle, and analyzed the coal mass ejection due to instability and coal burst induced by different intensity disturbances. At last, with the stratum conditions of Junde Coalmine as the model prototype, we numerically simulated the load displacement distribution of the stress concentration zone ahead of the working face disturbed by the main roof-fracture-induced dynamic load during the mining process as well as their varying characteristics,and qualitatively verified the above model.  相似文献   

7.
A coal burst is defined as a rapid expulsion of coal(and potentially gas) from the boundary of the roadway. Rock and coal fractures together with micro seismic vibration is a common occurrence during mining, however, it is very uncommon for coal and rock to be propelled into the roadway. Irrespective, such occurrences do occur and appear to require significantly more energy than is available from strain energy release during coal cutting. The sources of energy which can contribute to the propulsion of coal from the face or ribs are typically strain energy from the surrounding ground, seismic energy from a rapid rupture of the ground in the vicinity, or rapid expansion of gas from within the burst source area. The aim of this paper is to briefly review the bursts which may be related to strain energy, seismic energy and gas energy.  相似文献   

8.
Coal burst is a dynamic release of energy within the rock(or coal) mass leading to high velocity expulsion of the broken/failed material into mine openings. This phenomenon has been recognised as one of the most catastrophic failures associated with the coal mining industry, which can often lead to injuries and fatalities of miners as well as significant production losses. This paper aims to examine the mechanisms contributing to coal burst occurrence, with an emphasis on the energy release concept. In this study, a numerical modelling study has been conducted to evaluate the roles and contributions of difference energy components. The energy analysis presented in this paper can help to improve the understanding of energy release mechanisms especially under Australian conditions.  相似文献   

9.
Coal burst is the violent failure of overstressed coal, and it is often accompanied by sound, coal ejection and seismic events. It is subsequently recognized as a serious safety risk of Australia after double fatalities coal burst happened at Austar Coal Mine. Considering the increasing trend of coal burst severity and frequency with mining depth, it is an urgent task to develop the coal burst risk assessment methods for Australia underground coal mines. Coal burst propensity index method is a widely used method of burst risk evaluation of coal as it is summed up from the coal burst research and practice of many countries.This paper presents the experimental and theoretical research of coal burst propensity index method for coal burst risk assessment in Australia. The definition of four indexes including elastic strain energy index(W_(ET)), bursting energy index(K_E), dynamic failure time(DT) and uniaxial compression strength(RC)is introduced in the first part. Then, the standard laboratory test process and test parameter of coal burst propensity index is presented. DT test is conducted with 0.3 mm/min displacement control loading rate while other test is with 0.5 mm/min. Besides, modified data processing and risk classification method of test are proposed. Differentiate analysis of stress-strain curve is adopted in the data processing of DT and KEindex. A four level risk classification form of burst risk is recommended for Australian underground coal mines. Finally, two likely improvement methods of W_(ET) test, including volumetric strain indicator method and theoretical calculation method, are discussed.  相似文献   

10.
The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may increase the difficulty of stress control in the coal face and in its mining roadways, especially when the coal seam, the roof, and the floor have rock-burst propensities. The high energy accumulated in the island coal face and in its roof and floor will intensify rock-burst propensity or even induce rock burst,which further result in great casualties and financial losses. Taking island coal face 2321 in Jinqiao coal mine as a case, we propose a method for the prediction of rock-burst-threatened areas in an island coal face with weak rock-burst propensity. Based on the analysis of the movement of the overlying roof and characteristics of stress distribution, this method combined numerical simulation with drilling bits to ensure the prediction accuracy. The effects of coal pillars with different widths on the mitigation of stress concentration in the coal face and on the prevention of rock burst are analyzed together with the mechanism behind. Finally, corresponding measures against the rock burst in the island coal face are proposed.  相似文献   

11.
The development and achievements of modern coal mining with stowing are discussed in this paper. The necessity of developing coal mining with stowing is briefly summarized and internal damage within the strata and external damage on surface induced by longwall working with caving are discussed. Technological features of coal mining with pneumatic stowing in Germany, and fully mechanised coal mining with solid dense stowing in China, are discussed. In German hard coal mining stowing technologies are for technical, infrastructural and economical reasons not applicable. The discussion includes the stowing material transportation system, the stowing machine, and processes at the face. Progressiveness and application universality of China’s fully mechanised coal mining with solid dense stowing are illustrated through practical examples with different conditions. Obviously, the fully mechanised coal mine with solid dense stowing can be improved by automaion systems. This paper discusses further developmental potential of the technology.  相似文献   

12.
Coal burst occurrence on roadways has always been a major concern in deep underground coal mines,especially under complex geological conditions. To evaluate the effect of faulting on coal burst, the stress concentration in the vicinity a reverse fault was analysed considering the geological history of the fault formation where high horizontal stresses led to the initiation and propagation of the reverse fault.Various in situ stresses and mechanical parameters of the fault, including the ratio of horizontal stress to vertical stress were used to analyse the state of fault. Numerical modelling was conducted using two and three dimensional distinct element models(UDEC and 3 DEC) based on a geotechnical conditions of an Australian underground coal mine. The formation process of reverse fault was simulated to evaluate the stress characteristics in the coal seam and the immediate roof and floor near the fault. The results show that, both the horizontal and vertical stress in footwall were higher than those in hanging wall after the formation of the reverse fault. The stress condition near fault was complicated due to complex geology in the coal measures, and the vertical stress peaked in the footwall at a distance of about 160 m from the fault. When a roadway was excavated, stress concentration occurred at both the roadway face and ribs, which reached as high as 38 MPa in the ribs at a depth of 500 m. This will significantly elevate the risk of dynamic instability of the roadway such as coal burst. The stress concentration zone in the footwall can be considered as a hazardous zone near the reverse fault. This study provides a general reference for analysis of roadway stability affected by faults.  相似文献   

13.
Two miners were fatally injured when a pillar bump occurred during retreat mining in a southern West Virginia coal mine. The mine was operating in the Eagle seam with overmining in the No. 2 Gas and Powellton seams. A coal bump is defined as a sudden and violent failure of coal caused by the release of stored strain energy in the pillar. While significant strides have been made by academia, industry,and regulatory agencies to better understand bump conditions and mitigation techniques, coal bumps represent a long standing, highly site-specific engineering problem in which the exact failure mechanism is not clearly understood. In this case history, a cut-by-cut analysis of retreat mining operations was conducted on the 4 East Main leading up to the pillar bump event. Numerical input parameters were derived from site-specific geologic information and mine geometry for the analysis of pillar stress conditions and energy release using LaModel. An overview of stress conditions in the panel was presented including a precursor event that occurred two crosscuts inby the bump site. The methodology presented in the paper for the evaluation of the fatal bump event can be used for the identification of bump prone conditions prior to development and retreat of a mining area.  相似文献   

14.
On-site investigations consistently show that the rock burst inherent to coal seams varies greatly with coal seam thickness. In this study, impact factors related to coal seam thickness and surrounding rock strength were analyzed and a corresponding rock burst risk assessment method was constructed. The model reflects the influence of coal seam thickness on the stress distribution of surrounding rock at the roadway. Based on the roadway excavation range, a stress distribution model of surrounding roadway rock is established and the influence of coal seam thickness on rock burst risk is analyzed accordingly. The proposed rock burst risk assessment method is based on the equivalent surrounding rock strength and coal seam bursting liability. The proposed method was tested in a 3500 mining area to find that it yields rock burst risk assessment results as per coal seam thickness that are in accordance with real-world conditions. The results presented here suggest that coal seam thickness is a crucial factor in effective rock burst risk assessment.  相似文献   

15.
煤与瓦斯突出软煤层不具冲击倾向性,但在深部开采中却发生了软煤层冲击灾变动力现象.为探索软煤冲击灾变的成因,通过文献研究和工程案例实证分析,证明了软煤层冲击灾变现象的客观存在;通过煤样无侧限单轴压缩试验和冲击倾向性测定,得知试验煤样无冲击倾向性,极限载荷后单调应变强度软化;模拟工程背景现场与掘进工作面和采煤工作面中部相同的边界约束和加载条件,开展单自由度边界承压试验,考察灾变全程应力、应变、声发射特征,研究软煤冲击灾变机理.结果表明:单自由度边界条件下加载,3个煤样均出现应变强度软化-硬化-灾变过程,甚至反复软化-硬化;经应变强度硬化,灾变前煤样抗压强度均超过冲击倾向性的阈值条件;定义了应变强度软化、应变强度硬化系数,灾变前应变强度硬化系数分别为1. 26,1. 53,2. 25,应变强度硬化程度比较显著;软煤在单自由度约束条件下承压,应变硬化达到煤样冲击破坏强度条件时,可发生类似硬煤的冲击灾变,合理解释了现场软煤层冲击灾变的成因.深部高应力条件下,煤与瓦斯突出软煤掘进和开采,要对应变强度硬化导致煤层冲击灾变引起重视;工程上,这种冲击灾变的强度一般不高,但其可诱导煤与瓦斯突出或瓦斯异常涌出,危害性很高.  相似文献   

16.
In order to reach a large, untapped reserve of high-quality coal, D8 Cloverlick Mine proposed to mine a corridor nearly 600 m deep beneath the Benham Spur of Black Mountain, Kentucky's highest peak. D8 Cloverlick Mine was extracting the Owl seam, but the corridor's route lay approximately 20 m above century-old mine workings in the C–(Darby) seam. Adding to the concern, three serious coal bursts had recently occurred in nearby Owl seam workings. Maps of the old workings seemed to indicate that the underlying C–seam had been fully extracted. However, two of the coal bursts had occurred above areas where the C–Seam was also shown as mined out. Mine Safety and Health Administration(MSHA) Technical Support therefore investigated the records of past mining to better understand the old mine maps. Underground conditions observed in current Owl seam workings were also compared with the maps of the old C–seam workings. The study concluded that the presence of hazardous underlying remnants could not be ruled out. To mitigate the burst risk, D8 Cloverlick Mine adopted a strategy of stress probe drilling. A self-propelled coal drill was used to auger 11.5-m-long, small diameter holes in advance of mining. As each hole was drilled, the cuttings were measured to detect the presence of highly stressed coal. Ultimately the crossing was successfully completed without incident.  相似文献   

17.
济二矿首例孤岛综放面冲击矿压监测治理   总被引:3,自引:1,他引:3  
孤岛综放工作面及其周围巷道附近应力集中程度高,顶板运动剧烈,再加上地质构造的影响,采深较大时,很容易引发冲击矿压.孤岛工作面冲击矿压危险检测预报及控制的技术可事先分析冲击危险程度,并提出早期预报.本采用电磁辐射和钻屑法进行及时预报;应用卸压爆破进行处理,并采用电磁辐射和钻屑法检验防治措施的效果.实践证明,这套技术安全、可靠、有效,能够保证工作面的安全高效生产.  相似文献   

18.
煤矿冲击矿压的分级预测研究   总被引:13,自引:1,他引:13  
针对煤矿冲击矿压灾害,研究了冲击危险性的监测原理和冲击矿压危险的分级预测准则.通过连续监测预警技术和系统集成,应用综合指数法、微震法、电磁辐射法和钻屑法,形成冲击矿压的时空分级预测技术体系,即在时间上对冲击危险进行早期综合分析预测与即时预测相结合,在空间上进行区域预测与局部监测、点预测相结合,对冲击矿压的危险性根据危险指数的大小,按无、弱、中等和强冲击危险4级进行预测.根据预测的冲击矿压危险等级,采取加强监测、解危、甚至撤人等防治对策.工程实践表明,采用该技术,可大大提高冲击危险预测的准确性,取得良好的应用效果.  相似文献   

19.
In 2017, one of the international authorities on coal bursts, Mark Christopher, published a paper entitled‘‘Coal bursts that occur during development: A rock mechanics enigma", in which several relevant technical issues were identified. This paper outlines what is considered to be a credible, first-principles,mechanistic explanation for these three current development coal burst conundrums by reference to early published coal testing work examining the significance of a lack of ‘‘constraint" to coal stability and an understanding of how very specific structural geology and other geological features can logically cause this to occur in situ, albeit on a statistically very rare basis. This basic model is examined by reference to published information pertaining to the development coal-burst that occurred at the Austar Coal Mine in New South Wales, Australia, in 2014 and from the Sunnyside District in Utah, the United States.The ‘‘cause and effect" model for development of coal bursts presented also offers a meaningful explanation for the statistical improbability for what are nonetheless potentially highly-destructive events, being able to explain the statistical rarity being just as important to the credibility of the model as explaining the local conditions associated with burst events. The model could also form the basis for a robust, riskbased approach utilising a ‘‘hierarchy of controls", to the operational management of the development coal burst threat. Specifically, the use of pre-mining predictions for likely burst-prone and non-burstprone areas, the use of the mine layout to avoid or at least minimise mining within burst-prone areas if appropriate, and finally the development of an operational Trigger Action Response Plan(TARP) that reduces the likelihood of inadvertent roadway development into a burst-prone area without suitable safety controls already being in place.  相似文献   

20.
Underground coal mining in the U.S. is conducted in numerous regions where previous workings exist above and/or below an actively mined seam. Miners know that overlying or underlying fully extracted coal areas, also known as gob regions, can result in abutment stresses that affect the active mining. If there was no full extraction, and the past mining consists entirely of intact pillars, the stresses on the active seam are usually minimal. However, experience has shown that in some situations there has been sufficient yielding in overlying or underlying pillar systems to cause stress transfer to the adjoining larger pillars or barriers, which in turn, transfer significant stresses onto the workings of the active seam. In other words, the overlying or underlying pillar system behaves as a ‘‘pseudo gob." The presence of a pseudo gob is often unexpected, and the consequences can be severe. This paper presents several case histories, summarized briefly below, that illustrate pseudo gob phenomenon:(1) pillar rib degradation at a West Virginia mine at 335 m depth that contributed to a rib roll fatality,(2) pillar rib deterioration at a Western Kentucky mine at 175 m depth that required pillar size adjustment and installation of supplemental bolting,(3) roof deterioration at an eastern Kentucky mine at 400 m depth that stopped mine advance and required redirecting the section development,(4) coal burst on development at an eastern Kentucky mine at 520 m depth that had no nearby pillar recovery, and(5) coal burst on development at a West Virginia mine at the relatively shallow depth of 335 m that also had no nearby pillar recovery. The paper provides guidance so that when an operation encounters a potential pseudo gob stress interaction the hazard can be mitigated based on an understanding of the mechanism encountered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号