首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a specially-made reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.  相似文献   

2.
The study analyzes the characteristics of roof movement in mining top coal of inclined coal seam, and establishes the mechanical model of support and surrounding-rock stability in inclined coal seam. Besides, this study carries out the numerical calculation and field observation of roof movement and support stability, and provides the critical control measures. The results show that the fracture firstly appears in middle-upper roof and extends upwards in top coal caving in inclined coal seam; regular and irregular caving zones appear in middle-upper stress concentration region, and the asymmetric caving arch is finally formed. Support load of middle-upper working face is larger than that of the middle-lower face; dynamic load coefficient of upper support is large, and the load on the front of support is larger than that on the rear of it, which leads to poor support stability. Stability of support and surrounding-rock system depends mainly on upper-support stability.  相似文献   

3.
煤层开采过程中,在煤层顶、底板岩层一定的条件下,煤层的倾角和埋深对地表变形有很大的影响。通过三维有限元数值模拟,研究平缓或缓倾斜煤层、倾斜煤层、急倾斜煤层开采对上覆构筑物基础变形的影响,依据特定构筑物对倾斜变形、水平变形和基础沉降最大值的容许要求,提出安全煤柱(移动角γ、β)的保护范围,为构筑物安全运行和煤矿合理开采提供依据。  相似文献   

4.
Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail, waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it, which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks.  相似文献   

5.
大倾角煤层采场顶板运动结构分析   总被引:21,自引:1,他引:21  
根据大倾角煤层采场矿压显现特点 ,对采场顶板岩层的运动、破坏形式进行了研究 .提出了大倾角条件下老顶岩层在运动中易于形成倾斜砌体结构板大结构 ,直接顶岩层则因上段冒落矸石充填 ,在采场中下段形成砌体梁小结构 ,并探讨了中下段小结构平衡的极限条件和结构失稳形式 .  相似文献   

6.
煤层倾角是影响区段煤柱稳定性的关键因素之一.利用理论分析、相似模拟、数值模拟等方法研究了倾斜煤层开挖后倾向覆岩结构演化特征、煤柱变形及失稳破坏形式.研究结果表明,0~45°范围内随着煤层倾角增大,区段煤柱发生剪切失稳破坏的可能性增大;煤柱两侧覆岩结构呈现不对称分布,煤柱上侧砌体梁结构形成层位较低,煤柱下侧形成冒空区,砌体梁结构形成层位高于上侧;与水平煤层煤柱破坏以挤压变形为主不同,倾斜煤柱以沿着弱面剪切滑移破坏为主;不同倾角煤层煤柱围岩变形量呈不对称分布,煤柱下侧围岩变形量大于上侧,煤层倾角越大煤柱围岩变形量不对称分布趋势越明显.  相似文献   

7.
In the Kaiping Coal field, mining of five coal seams, located within 80 m in the Kailuan Group, #5, #7, #8,#9 and #12 coal seam, is difficult due to small interburden thickness, concentrated stress distributions,high coal seam metamorphism, and complex geological conditions. By using the ZTR12 geological penetration radar(GPR) survey combined with borehole observations, the overburden caving due to mining of the five coals seams was measured. The development characteristics of full-cover rock fractures after mining were obtained from the GPR scan, which provides a measurement basis for the control of rock strata in close multiple coal seam mining. For the first time, it was found that the overburden caving pattern shows a periodic triangular caved characteristic. Furthermore, it is proposed that an upright triangular collapsed pile masonry and an inverted triangular with larger fragments piled up alternately appear in the lower gob. The research results show that the roof structure formed in the gob area can support the key overlying strata, which is beneficial to ensure the integrity and stability of the upper coal seams in multiple-seam mining of close coal seams.  相似文献   

8.
For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of panel 37220 in Dongxia Coal Mine were monitored using the KJ513 dynamic monitoring system.The set up rooms adopted the "horizontal line-arc segment-inclined line" form and used different types of shield supports.The results show that the strata pressure of upper slice panel 37220-1 changed slightly along the strike direction,while along the dip direction it exhibited strong to weak pressure from bottom to top.The first weighting interval of lower slice panel 37220-2 was about 60.8 m,and the average periodic weighting interval were about 22.6 m.The strata behavior of panel 37220-2 exhibited a spatiotemporal characteristic in that periodic weighting occurred first in the middle-upper part,followed by the middle and upper parts,arc segment,and finally the lower part.During the periodic weighting,the weighting interval and intensity also exhibited strong space characteristics.The average dynamic load coefficient was 1.48 and the maximum lateral load of the side shield was 20-25 MPa.  相似文献   

9.
Longwall mining is one of the most acclaimed and widely used in underground method for coal extraction. The interaction of powered supports with the roof is the key issue in strata mechanics of longwall mining. Controlled caving of rock mass is a prerequisite pro thriving exploitation of coal deposits by longwall retreat with caving technique and support resistance has evolved as the most promising and effective scientific tool to predict various aspects related to strata mechanics of such workings. Load density,height of caving block, distance of fractured zone ahead of the face, overhang of goaf and mechanical strength of the debris above and below the support base have been found to influence the magnitude of load on supports. Designing powered support has been attempted at the different countries in different methods. This paper reviews the mechanism of roof caving and the conventional approaches of caving behaviour and support resistance requirement in the context of major strata control experiences gained worldwide. The theoretical explanation of the mechanism of roof caving is still continuing with consistently improved understanding through growing field experiences in the larger domain of geo-mining conditions and state-of-art strata mechanics analysis and monitoring techniques.  相似文献   

10.
With the depletion of easily minable coal seams, less favorable reserves under adverse conditions have to be mined out to meet the market demand. Due to some historical reasons, large amount of remnant coal was left unrecovered. One such case history occurred with the remnant rectangular stripe coal pillars using partial extraction method at Guandi Mine, Shanxi Province, China. The challenge that the coal mine was facing was that there is an ultra-close coal seam right under it with an only 0.8–1.5 m sandstone dirt band in between. The simulation study was carried out to investigate the simultaneous recovery of upper remnant coal pillars while mining the ultra-close lower panel using longwall top coal caving(LTCC). The remnant coal pillar was induced to cave in as top coal in LTCC system. Physical modelling shows that the coal pillars are the abutments of the stress arch structure formed within the overburden strata. The stability of overhanging roof strata highly depends on the stability of the remnant coal pillars. And the gob development(roof strata cave-in) is intermittent with the cave-in of these coal pillars and the sandstone dirt band. FLAC3 D numerical modelling shows that the multi-seam interaction has a significant influence on mining-induced stress environment for mining of lower panels. The pattern of the stress evolution on the coal pillars with the advance of the lower working face was found. It is demonstrated that the stress relief of a remnant coal pillar enhances the caveability of the pillars and sandstone dirt band below.  相似文献   

11.
为了解决急倾斜不稳定厚煤层的安全开采问题,在宜洛煤矿李沟井13021工作面进行了伪俯斜放顶煤开采试验,通过现场矿压观测与分析,取得了相应的技术参数,确定了较合理的回采工艺和放顶煤工艺.  相似文献   

12.
Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SPLL) found expanded usage in extracting thick coal seams in China. The two mining methods lead to large void space left behind the working face, which increases the difficulty in ground control.Longwall face failure is a common problem in both LTCC and SPLL mining. Such failure is conventionally attributed to low strength and high fracture intensity of the coal seam. However, the stiffness of main components included in the surrounding rock system also greatly influences longwall face stability.Correspondingly, surrounding rock system is developed for LTCC and SPLL faces in this paper. The conditions for simultaneous balance of roof structure and longwall face are put forward by taking the stiffness of coal seam, roof strata and hydraulic support into account. The safety factor of the longwall face is defined as the ratio between the ultimate bearing capacity and actual load imposed on the coal wall.The influences provided by coal strength, coal stiffness, roof stiffness, and hydraulic support stiffness,as well as the movement of roof structure are analyzed. Finally, the key elements dominating longwall face stability are identified for improving surrounding rock control effectiveness in LTCC and SPLL faces.  相似文献   

13.
巨厚砾岩层下综放采场矿压显现规律研究对于采场围岩控制和安全生产具有重要的现实意义.采用理论分析和义马矿区千秋煤矿矿压观测方法进行研究,得出结论为:综放工作面围岩可控程度属于难控围岩,即采场顶底板围岩控制困难.选出了ZF7000-18/28型放顶煤基本支架及其综放面合理配套设备;现场观测研究了综放面矿压显现规律,得出了采场顶板来压步距、来压强度等参数.采场矿压显现明显,不同区域来压具有不一致性.顶板周期来压时支架循环末工作阻力最大值为4 307.70 kN,为支架额定工作阻力的61.54%.因此,采场支架可靠性能较高,现场应用试验效果显著,矿井实现了"一井一面"生产模式,推动了安全高效矿井建设.  相似文献   

14.
急斜煤层分段放顶煤开采合理段高选择研究   总被引:1,自引:0,他引:1  
为确定急斜煤层水平分段综放开采条件下工作面段高的合理取值,将开采后裸露顶板岩层简化为三边固支的矩形薄板,采用薄板破断理论对受横向和纵向载荷作用下的斜置矩形薄岩板进行力学分析.研究表明:岩板走向长度、倾斜长度、岩层倾角、覆岩载荷及泊松比是影响段高取值的5个主要因素.应以在工作面上方采空区煤矸体沿着顶煤采出后形成的槽形采空区域下移前岩板不发生沿根部折断为极限段高的选择标准.工作面合理段高取值分为3类:第Ⅰ类煤层倾角45°~55°,取值在29 m范围内;第Ⅱ类55°~75°,取值在51 m范围内;第Ⅲ类75°~90°,该范围内开采工艺及设备选择对合理段高取值的影响更为重要.  相似文献   

15.
综采放顶煤工作面岩层结构分析   总被引:17,自引:1,他引:16  
在大量现场实测、相似模拟试验和理论分析的基础上,提出了“砌体梁”与“半拱”式结构结合而构成的综放工作面覆岩结构的基本形式。指出覆岩结构的特殊性及顶煤的松软破碎是造成综采放顶煤工作面矿压显现复杂化的主要原因,并由此分析了矿压显现特点及其控制.  相似文献   

16.
Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.  相似文献   

17.
In the practice of mining shallow buried ultra-close seams, support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf (TLRMG). In this paper, the factors causing support failure are summarized into geology and mining technology. Combining column lithology and composite beam theory, the key stratum of the rock strata is determined. A finite element numerical simulation is used to analyze the overlying load distribution rule of the main roof for different plane positions of the upper and lower room mining pillars. The tributary area theory (TAT) is adopted to analyze the vertical load distribution of each pillar, and dynamic models of coal pillar instability and main roof fracture are established. Through key block instability analysis, two critical moments are established, of which critical moment A has the greater dynamic load strength. Great economic losses and safety hazards are created by the dynamic load of the fracturing of the main roof. To reduce these negative effects, a method of pulling out supports is developed and two alternative measures for support failure prevention are proposed: reinforcing stope supports in conjunction with reducing mining height, or drilling ground holes to pre-split the main roof. Based on a comprehensive consideration of economic factors and the two categories of support failure causes, the method of reinforcing stope supports while reducing mining height was selected for use on the mining site.  相似文献   

18.
1 Introduction A large amount of coal seam with hard coal and hard roof exists in the east mining area of China, such as in the representative mining area of Xuzhou, where the hardness is relatively large (f >2); the roof is hard and the thickness is relatively large (about 20 m). Two key problems must be solved for the suc- cessful application of fully-mechanized coal face with top-coal caving technology: the first is the top-coal falling ability and the second is the control of the hard-and-…  相似文献   

19.
淮南潘集一矿11—2煤层层间滑动构造研究   总被引:1,自引:0,他引:1  
潘集一矿11—2煤层间滑动构造发育,层滑构造特征表现为顶底板揉皱楔入煤层中使得煤层破碎,煤质变差,顶底板凹凸变化。煤层厚度变化大,稳定性差,薄煤带发育。矿区层滑构造主要分布于中西区浅及中深部位置,对煤层厚度影响较大。为了探明矿区层滑构造的成因机理,对矿区层滑构造特征及其类型进行了研究。结果表明:潘集一矿11—2煤层滑构造主要表现形式为断裂式层间滑动,说明矿区层滑构造主要是受矿区断层的牵引作用所致。将11—2煤层滑构造分为揉皱型、断滑型和断裂型,矿区西部层滑构造主要表现为断裂型和断滑型,中部主要表现为揉皱型和断裂型,东部未开采区主要表现为断滑型,为矿区生产部署提供了参考依据。  相似文献   

20.
顶煤冒放性及其预测分类研究   总被引:5,自引:0,他引:5  
运用相似材料模型试验,提出了顶煤冒放的桥拱式、半拱式和柱式3种结构特征;分析了影响顶煤冒放性的主要因素;运用数值方法得出了各因素的影响规律、主次排序和权重;基于模糊数学理论,提出了预测顶煤冒放性的分类方案.并运用全国29个主采煤层的分类结果验证了分类方案的正确性和实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号