首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Performance of cemented coal gangue backfill   总被引:3,自引:3,他引:3  
Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong, and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars. The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue is 1:4:15 and mass fraction of solid materials reaches 72%-75%. Harden mechanism suggests that the cemented gangue fill has a higher middle and long term comprehensive strength.  相似文献   

2.
Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive mined-out gobs, enormous ore body under roadway and low recovery ratio of Yongshaba Mine, Kaiyang Phosphor Mine Group, Guizhou Province, China. An appropriate backfill system and craftwork were designed, using shattering milling method to crush gypsum, double-axles mixing and strong activation mixing way to mix slurry, cemented slurry and mullock backfill alternately process. The results show that gypsum is fit for backfilling afterwards by adding fly ash, though it is not an ideal aggregate for fine granule and coagulate retardation. The suggested dosage (the mass ratio of cement to fly ash to gypsum) is 1:1:6–1:1:8 with mass fraction of solid materials 60%–63%. Slurry is transported in suspend state with non-plastic strength, and then in concretion state after backfilling. The application to mine shows the technology is feasible, and gypsum utilization ratio is up to 100%. Transportation and backfill effect is very good for paste-like slurry and drenching cemented slurry into mullock, and the compressive strength and recovery ratio are 2.0 MPa and 82.6%, respectively, with the maximum subsidence of surface only 1.307 mm. Furthermore, the investment of system is about 7×106 yuan (RMB), only 1/10 of that of traditional paste backfill system. Foundation item: Project (2006BAB02A03) supported by the National Key Technology Research and Development Program; Project (08MX16) supported by Mittal Scientific and Technological Innovation Projects of Central South University during 2008  相似文献   

3.
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM.  相似文献   

4.
A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a compos-ite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is I(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, theological paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 Yuan/t, good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.  相似文献   

5.
The proliferation of unconventional gas well development in the Northern Appalachian coalfields has raised a number of mine safety concerns. Unconventional wells, which extract gas from deep shale formations, are characterized by gas volumes and pressures that are significantly higher than those observed at many conventional wells. The gas is composed largely of methane as well as other hydrocarbons. Hundreds of planned and actively producing wells penetrate protective coal pillars or barriers within active mine boundaries, including chain pillars located between longwall panels. Gas released from a well damaged by mining-induced ground movements could pose a risk to miners by flowing into the mine atmosphere. The mining-induced ground movements that may cause well damage include conventional subsidence, non-conventional subsidence(e.g. bedding plane slip), pillar failure, and floor instability. This paper describes the known risk factors for each of the four failure mechanisms. It includes a framework that can guide the risk assessment process when mining takes place near gas or oil wells.  相似文献   

6.
This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.  相似文献   

7.
盾构法施工过程中,盾尾同步注浆对控制隧道轴线上浮和地面沉降起着至关重要的作用.为使盾构隧道同步注浆浆液具有较好的工作性能,选用水泥、粉煤灰、膨润土、砂、水作为原材料,采用正交设计的方法进行试验,探讨了浆液各原材料对浆液稠度、凝结时间、泌水率、7d抗强度等指标的影响规律及同步注浆浆液配比的优化方向.试验表明:水泥是影响凝结时间和抗压强度的主要因素,水泥的加入能够缩短凝结时间、增大抗压强度和降低泌水率;粉煤灰能改善浆液和易性;膨润土有增稠、保水的作用,能提高浆液稳定性,但掺量要控制在一定范围内;砂作为浆液骨料起填充作用,主要影响浆液稠度,砂的用量与浆液稠度大小呈反比趋势;水是影响泌水率的主要因素,用水量增加导致浆液泌水率、稠度增大,凝结时间变长.最优的配合比为:水泥∶粉煤灰∶膨润土∶砂∶水为160∶400∶50∶830∶360,制备的浆液稠度为11~12cm,凝结时间为10~13h,泌水率不高于3%,7d抗压强度不低于2MPa.  相似文献   

8.
Steeply dipping, vein and tabular orebodies are traditionally extracted with longitudinal retreat mining methods such as Eureka and Avoca in a bottom-up sequence with delayed backfill. To increase productivity, sill pillars in the orebody are used to separate mining zones thus allowing production to take place simultaneously in two or more zones. While such mining methods are productive, they may be accompanied with high volumes of hanging wall overbreak causing significant unplanned ore dilution. In this work, it is shown through a mine design case study of a narrow vein deposit that a sill pillar could also play a significant role in limiting hanging wall overbreak. To demonstrate the role of sill pillar, a novel numerical modelling scheme is proposed to account for progressive stope wall overbreak. A numerical modelling approach of element death and rebirth is developed to allow for the detected stope overbreak to be immediately removed and replaced with backfill material before upper-level stope extraction. It is further shown that the average overbreak volume could be reduced by as much as 33% when the sill pillar is strategically placed in the lower half of a mine plan.  相似文献   

9.
This paper focuses on the instability mechanism of an isolated pillar, caused by time-dependent skin degradation and strength heterogeneity. The time-dependent skin degradation is simulated with a non-linear rheological model capable of simulating tertiary creep, whereby two different pillar failure cases are investigated. The first case is of an isolated pillar in a deep hard rock underground mine and subjected to high stresses. The results show that pillar degradation is limited to the regions near the surface or the skin until two months after ore extraction. Afterwards degradation starts to extend deeper into the pillar, eventually leaving a highly-stressed pillar core due to stress transfer from the failed skin.Rockburst potential indices show that the risk increases exponentially at the core as time goes by. It is then demonstrated that the progressive skin degradation cannot be simulated with conventional strain-softening model assuming brittle failure. The parametric study with respect to the degree of heterogeneity reveals that heterogeneity is key to the occurrence of progressive skin degradation. The second case investigated in this study is pillar failure taking place in a very long period. Such failure becomes significantly important when assessing the risk for ground subsidence caused by pillar collapse in an abandoned mine. The analysis results demonstrate that the employed non-linear rheological model can simulate gradual skin degradation taking place over several hundred years. The percentage of damage zone volume within the pillar is merely 1% after a lapse of one days and increases to 50% after one hundred years, indicating a high risk for pillar collapse in the long term. The vertical displacements within the pillar also indicate the risk of subsidence. The proposed method is suitable for evaluating the risk of ground surface subsidence above an abandoned mine.  相似文献   

10.
Photogrammetry, as a tool for monitoring underground mine deformation, is an alternative to traditional point measurement devices, and may be capable of accurate measurements in situations where technologies such as laser scanning are unsuited, undesired, or cost-prohibitive. An underground limestone mine in Ohio is used as a test case for monitoring of structurally unstable pillars. Seven pillars were photographed over in a 63 day period, punctuated by four visits. Using photogrammetry, point clouds of the mine geometry were obtained and triangulation surfaces were generated to determine volumes of change over time. Pillar spalling in the range of 0.29–4.03 m3 of rock on individual rib faces was detected. Isolated incidents of rock expansion prior to failure, and the isolated failure of a weak shale band were also observed. Much of the pillars remained unchanged during the monitoring period, which is indicative of proper alignment in the triangulated surfaces. The photographs of some ribs were of either too poor quality or had insufficient overlap, and were not included. However, photogrammetry was successfully applied to multiple ribs in quantifying the pillar geometry change over time.  相似文献   

11.
The pumping ability and placement performance of fresh cemented paste backfill(CPB) in underground mined cavities depend on its rheological properties. Hence, it is crucial to understand the rheology of fresh CPB slurry, which is related to CPB mixture design and the temperature underground. This paper presented an experimental study investigating the effects of binder type, content, water chemical properties and content, and temperature, on the rheological properties of CPB material prepared using the tailings of a copper mine in South Australia. Portland cement(PC), a newly released commercially manufactured cement called Minecem(MC) and fly ash(FA) were used as the binders added to the mine tailing materials. Various amounts of two different water types were added to the mixtures in the preparation of backfill material slurry. Six different temperatures ranging from 5 to 60 °C were to investigate the effect of temperature on CPB rheology. Overall, the increasing water content and decreasing temperature lead to lower yield stress. Based on the results obtained from the rheological properties of CPB slurry, it was found that at room temperature(25 °C), with regards to the unconfined compressive strength(UCS) performance, the replacement of 4% PC mixed CPB(28 days UCS 425 k Pa) to 3% MC mixed CPB(28 days UCS 519 k Pa), reduced the slurry yield stress from 210.7 to 178.5 Pa. The results also showed that the chemical composition of water affects the yield stress of CPB slurry and that MC mitigates the negative effect of mine-processed water(MW) and thus lead to improve the rheological properties of the slurry. However, the results suggested that the rheological properties of a mixture using MC is very sensitive to the water volume and temperature change. Therefore, using MC in backfill requires better quality control in slump mixing.  相似文献   

12.
医疗废物焚烧灰、渣对人体健康风险评价   总被引:1,自引:0,他引:1  
针对医疗废物处置不当容易产生二次污染的的问题,指出焚烧法是目前最为可行的处置方法之一,但处置医疗废物产生的固体废弃物(飞灰、灰渣)若直接释放到环境中,仍可能存在潜在的环境风险与危害.通过浸出实验与模式预测相结合,研究飞灰与灰渣中重金属通过饮水途径对人体产生的健康风险值.铬在医疗飞灰和灰渣中个人年风险最大,分别达8.8865×10-5/a和8.2597×10-5/a,超过国际辐射防护委员会(ICR)推荐的最大可接受风险5.0×10-5/a.医疗废物焚烧处置后的飞灰、灰渣存在着健康风险隐患,应该对其按危险废物进行处置与环境管理.  相似文献   

13.
Surface subsidence is a typical ground movement due to longwall mining, which causes a series of environmental problems and hazards. In China, intensive coal extractions are commonly operated under dense-populated coalfields, which exacerbates the negative subsequences resulted from surface settlement. Therefore, effective approaches to control the ground subsidence are in urgent need for the Chinese coal mining industry. This paper presents a newly developed subsidence control technology: isolated overburden grout injection, including the theory, technique and applications. Relevant procedures such as injection system design, grouting material selection, borehole layout, grout take estimation and injection process design are proposed. The applicability of this technology has been demonstrated through physical modelling, field measurements, and case studies. Since 2009, the technology has been successfully applied to 14 longwall areas in 9 Chinese coal mines. The ultimate surface subsidence factors vary from 0.10 to 0.15. This method has a great potential to be popularized and performed where longwall mining are implemented under villages and ground infrastructures.  相似文献   

14.
尾砂胶结充填应用粉煤灰的机理及试验研究   总被引:3,自引:0,他引:3  
文章分析了矿山尾砂胶结充填的工艺特点和强度特性,进行了尾砂胶结充填掺用粉煤灰的强度试验和工业试验,证明粉煤灰能够显著提高尾砂胶结充填体力学性能。在此基础上,探讨了粉煤灰胶凝作用、充填作用、稳定作用、减水作用对尾砂胶结充填体力学性能影响的物化机理。理论和试验表明:尾砂胶结充填应用粉煤灰技术可行、经济合理,是矿山胶结充填节约水泥、降低成本的有效途径。  相似文献   

15.
从焦作市某水厂源水中Cr6+质量浓度持续上升的实际问题出发,通过搜集、整理和分析焦作市岩溶水及地质构造、实验室研究等方法来查明该水厂源水中Cr6+的污染来源、污染途径及污染机理.结果表明,位于焦作北部山区的某粉煤灰堆放场中的粉煤灰长期处于碱性和氧化环境,有利于Cr3+转化为Cr6+,灰水和大气降水对粉煤灰不断地淋滤和浸溶,使Cr6+随水渗入地下,造成地下水污染.研究证明,该粉煤灰堆放场对焦作市某水厂饮用水水源构成了潜在的威胁.  相似文献   

16.
Based on the compaction characteristic test and the nonlinear compaction deformation characteristics of backfill material, this paper applies the theory of nonlinear elastic foundation of thin plate to establish a mechanical model of backfill body and roof in solid dense backfill coal mining. This study critically analyses the deflection equation of the roof by the energy method, derives the conditions of roof breakage and combined with concrete engineering practice analyses, determines roof movement regularity and stability in solid dense backfill mining. Analysis of the engineering practice of the 13,120 backfill panel of Pingmei 12# mine shows the theoretical maximum of roof convergence in backfill mining to be415 mm which is in significant agreement with the measured value. During the advancing process of solid backfill mining at the panel, the maximum tensile stress on the roof is less than its tensile strength which does not satisfy the conditions for roof breakage. Drilling results on the roof and ground pressure monitoring show that the integrity of roof is strong, which is consistent with the theoretical calculations described in this study. The results presented in the study provide a basis for further investigation into strata movement theory in solid dense backfill mining.  相似文献   

17.
金属矿山地下开采引起地表塌陷已经成为一种主要的矿山地质环境问题.地面塌陷受多方面因素影响,各因素相互作用使得金属矿山地表塌陷形成机理复杂.本文以大冶铁矿东露天采场地面塌陷为例,从采场地质环境、矿体特征、采矿方法、崩落角、地面塌陷的形式等方面,综述了地面塌陷的特征,并探讨了地面塌陷的形成规律,该研究为矿山地面塌陷的成因及控制对策研究提供了帮助.  相似文献   

18.
针对云南省矿井地下空间利用率低、蓄电储能需求日益增长的问题,综合考虑岩石力学、矿山规划、环境、经济等多方面影响因素,对云南省利用废弃矿井建设抽水蓄能电站的开发潜力进行了定量评估;同时,以常规抽水蓄能电站为基础,结合云南省地质条件、矿产资源分布、矿山地下空间分布特点等,对矿井抽水蓄能电站建设时站址的选择、地下空间的稳定、...  相似文献   

19.
菌根与豆科植物组合在煤矿区废弃物的生态效应   总被引:10,自引:0,他引:10  
以煤矿区2种特有的固体废弃物粉煤灰、煤矸石为基质,分别对2种AM菌根真菌与3种豆科植物白三叶草、紫花苜蓿和刺槐之间的匹配关系进行了研究,以宿主植物的生物量、吸磷效率、侵染率和菌根依赖性为标准,初步筛选出G.mosseae为优势菌根菌株.结果表明:在煤矿区特殊立地条件下生长的AM菌根真菌与豆科植物形成了2个最佳优势组合,即煤矸石与粉煤灰混合物和粉煤灰中紫花苜蓿与优势菌株摩西球囊菌(G.mosseae)组合,煤矸石与河沙混合物中刺槐与地球囊霉菌(G.geosporum)组合.这2种优势组合促进了植株的生长,菌根与植物间表现出良好的相互依赖性和较高的菌根侵染率,促进了植株对不同基质中磷的吸收,取得了明显生态效应.  相似文献   

20.
Geomechanical design of a room and rib pillar granite mine   总被引:1,自引:0,他引:1  
The geomechanical and stability design of an underground granite mine located in Canal San Bovo (Trento district, Northeastern Italy) was described. The exploitation of the granite, which is used in the ceramic industry, was carried out by the rooms and rib pillars method. The rooms are 12 m wide while the pillars are 11 m wide and they cross the main discontinuity set of the rock mass in the perpendicular direction. To verify the stability condition of an underground mine, it is necessary to carry out the calcula- tions that are able to check both the local and global stability of the rock mass. In the studied example, this approach has been applied with the development of analytical and numerical parametric analyses and it has permitted to get the best orientation and to design the size of rooms and pillars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号