首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rock fall related accidents continue to occur in coal mines, although artificial support mechanisms have been used extensively. Roof stability is primarily determined in many underground mines by a limited number of methods that often resort to subjective criteria. It is argued in this paper that stability conditions of mine roof strata, as a key factor in sustainability in coal mines, must be determined by a survey which proactively investigates fundamental aspects of said mine. Failure of rock around the opening happens as a result of both high rock stress conditions and the presence of structural discontinuities. The properties of such discontinuities affect the engineering behavior of rock masses causing wedges or blocks to fall from the roof or sliding out of the walls. A practical rule-based approach to assess the risk of a roof fall is proposed in the paper. The method is based on the analysis of structural data and the geometry and stability of wedges in underground coal mines. In this regard, an accident causing a huge collapse in a coal mine leading to 4 fatalities is illustrated by way of a case study. Horizontal and vertical profiles are prepared by geophysical methods to define the falling zone and its boundaries. The collapse is then modeled by the use of sophisticated computer programs in order to identify the causes of the accident.  相似文献   

2.
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.  相似文献   

3.
Although conventional coal mine designs are conservative regarding pillar strength, local failures such as roof-falls and pillar bursts still affect mine safety and operations. Previous studies have identified that discontinuous, layered roof materials have some self-supporting capacity. This research is a preliminary step towards understanding these mechanics in coal-measure rocks. Although others have considered broad conceptual models and simplified analogs for mine roof behavior, this study presents a unique numerical model that more completely represents in-situ roof conditions. The discrete element method(DEM) is utilized to conduct a parametric analysis considering a range of in-situ stress ratios, material properties, and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions. Model results are compared to empirical observations of roof-support effectiveness(ARBS) in the context of the coal mine roof rating(CMRR) system. Results such as immediate roof displacement, overall stability, and statistical relationships between model parameters and outcomes are presented herein. Potential practical applications of this line of research include:(1) roof-support optimization for a range of coal-measure rocks,(2) establishment of a relationship between roof stability and pillar stress, and(3) determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.  相似文献   

4.
In order to improve the recovery rate of coal, some mines have begun to recover the residual protective pillars in the form of short wall faces. However, it is difficult to control stability of the haulage entry and the ventilating entry under the mining influences of the pillar face and the two side faces. Thus the 4311 face, which was designed to recover the 57 m wide residual protective pillar in Guojiashan Coal Mine,was taken as engineering background. Distribution law of stress and plastic zone in the residual protective pillar was analyzed using the numerical simulation. Then the gob-side entry driving technology was proposed to layout the entries for the pillar face. Based on the analysis of stress distribution and deformation characteristics of surrounding rocks in gob-side entry driving with different width of narrow pillars, the width of the narrow pillar of the entries in the 4311 face was decided to be 4 m. In order to control stability of the gob-side entry driving, the mechanical model of the main roof was established and deformation characteristic of surrounding rock was analyzed. Then the bolt support technology with high strength and high pre-tightening force was proposed for entry support. Especially, the hydraulic expansion bolts were used to support the narrow pillar rib. The engineering results show that the width of the narrow pillar is reasonable and the entry support technology is effective. The research achievement can provide some references to pillar recovery for other coal mines.  相似文献   

5.
In order to enhance coal recovery ratio of open pit coal mines, a new extraction method called zonal mining system for residual coal around the end-walls is presented. The mining system can improve economic benefits by exploiting haulage and ventilation roadways from the exposed position of coal seams by utilizing the existing transportation systems. Moreover, the main mining parameters have also been discussed. The outcome shows that the load on coal seam roof is about 0.307 MPa and the drop step of the coal seam roof about 20.3 m when the thickness of cover and average volume weight are about 120 m and 0.023 MN/m3 respectively. With the increase of mining height and width, the coal recovery ratio can be improved. However, when recovery ratio is more than 0.85, the average stress on the coal pillar will increase tempestuously, so the recovery ratio should also be controlled to make the coal seam roof safe. Based on the numerical simulation results, it is concluded that the ratio of coal pillar width to height should be more than 1.0 to make sure the coal pillars are steady, and there are only minor displacements on the end-walls.  相似文献   

6.
This paper seeks to enhance the understanding that the horizontal stresses build up and release during coal pillar loading and unloading(post-failure) drawing upon three decades of observations, geomechanical monitoring and numerical modeling in bump-prone U.S. mines. The focus is on induced horizontal stress in mine pillars and surrounding strata as highly stressed pillars punch into the roof and floor, causing shear failure and buckling of strata; under stiff stratigraphic units of some western US mines, these events could be accompanied by violent failure of pillar cores. Pillar punching eventually results in tensile stresses at the base of the pillar, facilitating transition into the post-failure regime; this transition will be nonviolent if certain conditions are met, notably the presence of interbedded mudstones with low shear strength properties and proper mine designs for controlling seismicity and dynamic loads. The study clearly shows high confining stress build-up in coal pillars resulting in up to twice higher peak vertical stress and high strain energy accumulations in some western US mines in comparison with peak stresses predicted using common empirical pillar design methods. It is the unstable release of this strain energy that can cause significant damage resulting from pillar dilation and ground movements. These forces are much greater than the capacity of most common internal support systems, resulting in horizontal stressinduced roof falls locally, in mines under unremarkable far-field horizontal stress. Attention should be placed on pillar designs as increasing support density may prove to be ineffective. This mechanism is analyzed using field measurements and generic finite-difference stress analyses. The study confirms the higher load carrying capacity of confinement-controlled coal seams in comparison with structurally controlled coal seams. Such significant differences in confining stresses are not taken into account when estimating peak pillar strength using most common empirical techniques such as those proposed by Bieniawski and Salamon. While using lower pillar strength estimates may be considered conservative,it underestimates the actual capacity of pillars in accumulating much higher stress and strain energies,misleading the designer and inadvertently diminishing mine safety. The role of induced horizontal stress in mine pillars and surrounding strata is emphasized in coal pillar mechanics of violent failure. The triggering mechanism for the violent events is sudden loss of pillar confinement due to dynamic loading resulting from failure of overlying stiff and strong strata. Evidence of such mechanism is noted in the field by observed red-dust at the coal-rock interfaces at the location of coal bumps and irregular, periodic caving in room-and-pillar mines quantified through direct pressure measurements in the gob.  相似文献   

7.
Current coal pillar design is the epitome of suspension design.A defined weight of unstable overburden material is estimated, and the dimensions of the pillars left behind are based on holding up that material to a prescribed factor of safety.In principle, this is no different to early roadway roof support design.However, for the most part, roadway roof stabilisation has progressed to reinforcement, whereby the roof strata is assisted in supporting itself.This is now the mainstay of efficient and effective underground coal production.Suspension and reinforcement are fundamentally different in roadway roof stabilisation and lead to substantially different requirements in terms of support hardware characteristics and their application.In suspension, the primary focus is the total load-bearing capacity of the installed support and ensuring that it is securely anchored outside of the unstable roof mass.In contrast, reinforcement recognises that roof de-stabilisation is a gradational process with ever-increasing roof displacement magnitude leading to ever-reducing stability.Key roof support characteristics relate to such issues as system stiffness, the location and pattern of support elements and mobilising a defined thickness of the immediate roof to create(or build) a stabilising strata beam.The objective is to ensure that horizontal stress is maintained at a level that prevents mass roof collapse.This paper presents a prototype coal pillar and overburden system representation where reinforcement, rather than suspension, of the overburden is the stabilising mechanism via the action of in situ horizontal stresses.Established roadway roof reinforcement principles can potentially be applied to coal pillar design under this representation.The merit of this is evaluated according to failed pillar cases as found in a series of published databases.Based on the findings, a series of coal pillar system design considerations for bord and pillar type mine workings are provided.This potentially allows a more flexible approach to coal pillar sizing within workable mining layouts, as compared to common industry practice of a single design factor of safety(Fo S) under defined overburden dead-loading to the exclusion of other relevant overburden stabilising influences.  相似文献   

8.
The coal mine roof rating(CMRR) was developed to bridge the gap between geological variation in underground coal mines and engineering design. The CMRR accounts for the compressive strength of the immediate roof, the shear strength and intensity of any discontinuities present, and the moisture sensitivity of the immediate roof. The CMRR has been widely used and validated in Eastern US coal mines, but it has seen limited application in the Western US. This study focuses on roof behavior at a Western coal mine(Mine A). Mine A shows significant lateral geological variation, along with localized faulting and a laterally extensive sandstone channel network. The CMRR is not used to predict roof instability at the mine. It is, therefore, hypothesized that there are other factors that are correlated with roof instability in underground coal mines that could potentially also be considered in conjunction with the CMRR.This hypothesis was tested by collecting 30 CMRR measurements at Mine A. At each measurement location, a binary record of the roof condition(stable or unstable) was made, and other parameters such as depth of cover, presence of faulting, and sandstone channels were also recorded. ANOVA tests showed that the CMRR values and the roof conditions were not strongly correlated, indicating that the CMRR input criteria are not fully predictive of roof stability at this mine. The CMRR values showed statistically significant correlations(p less than 0.05) with faulting as well as with location at an intersection. For areas that had previously experienced roof fall but were currently stable, faulting was correlated with roof condition(p less than 0.05) only when the condition was classified as unstable.  相似文献   

9.
The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods.  相似文献   

10.
In 2016, room-and-pillar mining provided nearly 40% of underground coal production in the United States.Over the past decade, rib falls have resulted in 12 fatalities, representing 28% of the ground fall fatalities in U.S.underground coal mines.Nine of these 12 fatalities(75%) have occurred in room-andpillar mines.The objective of this research is to study the geomechanics of bench room-and-pillar mining and the associated response of high pillar ribs at overburden depths greater than 300 m.This paper provides a definition of the bench technique, the pillar response due to loading, observational data for a case history, a calibrated numerical model of the observed rib response, and application of this calibrated model to a second site.  相似文献   

11.
The coal mine roof rating(CMRR) is a measure of roof quality or structure competency for bedded roof types typically of underground coal mines. The CMRR has been used widely in the US, South Africa,Canada and Australia. In order to investigate the application of the CMRR system in Chinese coal mines,two coal mines in China located in Panjiang Coal Field in Guizhou Province were investigated. Field data were collected which is required to calculate the CMRR value based on underground exposure. The CMRR values of 11 locations in two coal mines were calculated. The investigations demonstrated that the chance of mine roof failure is very low if the CMRR value is more than 50, given adequate support is installed in mine. It was found that the CMRR guideline are useful to preliminarily investigate stability in Panjiang Coal Field mines.  相似文献   

12.
针对实际工程中作用在煤柱-顶板系统上的荷载为非均布荷载的现象,研究了煤柱-顶板系统在非均布荷载下的失稳机制。基于温克尔假设,把坚硬顶板视为弹性梁,把煤柱等效为连续均匀分布的支撑弹簧,从而形成煤柱-顶板相互作用系统的力学模型;基于尖点突变理论,对采空区煤柱-顶板系统失稳机理进行了探索,导出了该系统失稳的充要力学判据,并得出了顶板破坏的临界厚度;同时,分析了影响系统失稳的主要参数,并给出了若干工程建议;最后以甘肃省某煤矿为例,计算了该矿体的临界顶板厚度。所得结果为进一步研究煤柱-顶板系统的失稳机制和制定相关规范提供了参考。  相似文献   

13.
The National Institute for Occupational Safety and Health(NIOSH) conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia. The deformation and the stress change in an instrumented pillar were monitored during the progress of pillar retreat mining at two sites of different geological conditions and depths of cover. The main objectives of the monitoring program were to better understand the stress transfer and load shedding on coal pillars and to quantify the rib deformation due to pillar retreat mining; and to examine the effect of rib geology and overburden depth on coal rib performance. The instrumentation at both sites included pull-out tests to measure the anchorage capacity of rib bolts, load cells mounted on rib bolts to monitor the induced loads in the bolts, borehole pressure cells(BPCs) installed at various depths in the study pillar to measure the change in vertical pressure within the pillar, and roof and rib extensometers installed to quantify the vertical displacement of the roof and the horizontal displacement of the rib that would occur during the retreat mining process.The outcome from the monitoring program provides insight into coal pillar rib support optimization at various depths and geological conditions. Also, this study contributes to the NIOSH rib support database in U.S coal mines and provides essential data for rib support design.  相似文献   

14.
通过对福建省龙岩市所辖乡镇煤矿十年伤亡事故的统计发现,冒顶事故在各类事故中占有绝对优势。因此,预防冒顶事故的发生,对该地区煤矿安全生产具有十分重大的意义。为了寻找冒顶事故发生的特点,从工人工龄、作业时间、生产季节等与冒顶事故的联系入手,找出了其中的某些规律,并据此提出了相应的措施。  相似文献   

15.
With the depletion of easily minable coal seams, less favorable reserves under adverse conditions have to be mined out to meet the market demand. Due to some historical reasons, large amount of remnant coal was left unrecovered. One such case history occurred with the remnant rectangular stripe coal pillars using partial extraction method at Guandi Mine, Shanxi Province, China. The challenge that the coal mine was facing was that there is an ultra-close coal seam right under it with an only 0.8–1.5 m sandstone dirt band in between. The simulation study was carried out to investigate the simultaneous recovery of upper remnant coal pillars while mining the ultra-close lower panel using longwall top coal caving(LTCC). The remnant coal pillar was induced to cave in as top coal in LTCC system. Physical modelling shows that the coal pillars are the abutments of the stress arch structure formed within the overburden strata. The stability of overhanging roof strata highly depends on the stability of the remnant coal pillars. And the gob development(roof strata cave-in) is intermittent with the cave-in of these coal pillars and the sandstone dirt band. FLAC3 D numerical modelling shows that the multi-seam interaction has a significant influence on mining-induced stress environment for mining of lower panels. The pattern of the stress evolution on the coal pillars with the advance of the lower working face was found. It is demonstrated that the stress relief of a remnant coal pillar enhances the caveability of the pillars and sandstone dirt band below.  相似文献   

16.
The rock mass rating(RMR) has been used across the geotechnical industry for half a century. In contrast,the coal mine roof rating(CMRR) was specifically introduced to underground coal mines two decades ago to link geological characterization with geotechnical risk mitigation. The premise of CMRR is that strength properties of mine roof rock are influenced by defects typical of coal measures stratigraphy.The CMRR has been used in longwall pillar design, roof support methods, and evaluation of extended cuts,but is rarely evaluated. Here, the RMR and CMRR are applied to a longwall coal mine. Roof rock mass classifications were undertaken at 67 locations across the mine. Both classifications showed marked spatial variability in terms of roof conditions. Normal and reverse faulting occur across the mine, and while no clear relationships exist between rock mass character and faulting, a central graben zone showed heterogeneous rock mass properties, and divergence between CMRR and RMR. Overall, the CMRR data fell within the broad envelope of results reported for extended cuts at Australian and U.S. coal mines. The corollary is that the CMRR is useful, and should not be used in isolation, but rather as a component of a strata control programme.  相似文献   

17.
A roadway within ultra-close multiple-seams(RUCMSs) is one of the most difficult supported coal roadways to deal with in underground coal mines. This is usually due to the unknown stress distributions, improper roadway layout, and unreasonable support parameters. In order to solve this support problem and effectively save RUCMSs from frequent and abrupt disasters(such as serious deformation of the surrounding rock, roof cave ins, and coal side collapse), a comprehensive method is adopted here which includes theoretical analysis, numerical simulation, and field monitoring. A mechanical model was constructed to determine the stress distribution in the coal pillar after two sides of a longwall panel had been mined. Based on this model, the horizontal, vertical, and tangential stress equations for the plane below the floor of the upper-left coal pillar were deduced. In addition, a typical coal mine(the Jinggonger colliery, located in Shuozhou city, Shanxi province, China) with an average distance between its 9# and 11# coal seams of less than 8.0 was chosen to conduct research on the proper layout and reasonable support required for a typical coal roadway located within coal seam 11#. Using FLAC3D(Fast Lagrangian Analysis of Continua in 3-Dimensions) numerical software, eight schemes were designed with different horizontal distances(d) between the center lines of the coal pillar and the roadway in the lower coal seam(RLCS). The simulations and detailed analysis indicate that the proper distances required are between 22.5 and 27.5 m. A total of 20 simulation schemes were used to investigate the factors influencing the support provided by the key bolts(bolt length, spacing, distance between two rows, installation angle, and pre-tightening force). The results were analyzed and used to determine reasonable values for the support parameters. Field results show that the stability and strength of the RLCS can be effectively safeguarded using a combination of researched stress distribution characteristics, proper layout of the RLCS, and correct support parameters.  相似文献   

18.
Coal bumps have long been a safety hazard in coal mines, and even after decades of research, the exact mechanics that cause coal bumps are still not well understood. Therefore, coal bumps are still difficult to predict and control. The LaModel program has a long history of being used to effectively analyze displacements and stresses in coal mines, and with the recent addition of energy release and local mine stiffness calculations, the LaModel program now has greatly increased capabilities for evaluating coal bump potential. This paper presents three recent case histories where coal stress, pillar safety factor, energy release rate and local mine stiffness calculations in LaModel were used to evaluate the pillar plan and cut sequencing that were associated with a number of bumps. The first case history is a longwall mine where a simple stress analysis was used to help determine the limiting depth for safely mining in bump-prone ground. The second case history is a room-and-pillar retreat mine where the LaModel analysis is used to help optimize the pillar extraction sequencing in order to minimize the frequent pillar line bumps. The third case history is the Crandall Canyon mine where an initial bump and then a massive pillar collapse/bump which killed 6 miners is extensively back-analyzed. In these case histories, the calculation tools in LaModel are ultimately shown to be very effective for analyzing various aspects of the bump problem, and in the conclusions, a number of critical insights into the practical calculation of mine failure and stability developed as a result of this research are presented.  相似文献   

19.
煤层顶板垮落是煤矿生产常见的灾害,煤层顶板稳定性预测是防治顶板事故的关键技术措施。构造应力是影响煤层顶板稳定性的重要因素之一。利用FLAC3D软件,分析在构造应力的影响下煤层项板在采动过程中的变形破坏特征,以及不同侧压条件下煤层顶板的移动规律。结果表明,顶板破坏在岩梁中部是由下向上发展的,在一定的条件下,随着水平构造应力的增大,顶板破坏范围逐步减小,顶板岩层的位移逐步减小。  相似文献   

20.
Due to the use of outdated mining technology or room and pillar mining process in small coal mines, the coal recovery ratio is only 10–25%. In many regions of China, the damage area caused by the small coal mines amounted to nearly one hundred square kilometers. Therefore, special mining techniques must be taken to reclaim the wasted resource in disturbed coal areas. This paper focuses on the different mining methods by analyzing the longwall panel layout and abandoned gateroad(AG) distribution in the abandoned area of Cuijiazhai coal mine in northwestern China. On the basis of three-dimensional geological model, FLAC3 D numerical simulation was employed. The abutment pressure distribution was simulated when the panel face passed through the disturbed areas. The proper angle of the inclined face was analyzed when the panel face passed through the abandoned gateroads. The results show that the head end of the face should be 13–20 m ahead of the tail end. The pillars on both sides of abandoned gateroads had not been damaged at the same time, and no large-area stress concentration occured above the main roof.Therefore, the coal reserves of disturbed areas can be successfully recovered by using underground longwall mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号