首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of precipitation on the kinetics of static and dynamic recrystallization (DRX) was investigated in AISI 403 and 403Nb martensitic stainless steels. Hot compression tests were performed in the temperature range of 1073 K to 1473 K (800 °C to 1200 °C) and strain rates of 0.001 and 0.1 s?1 to study DRX and precipitation behaviors. In parallel, stress relaxation tests were conducted with pre-strains of 0.1, 0.15, 0.2, and 0.25, a strain rate of 0.1 s?1, and in the 1073 K to 1473 K (800 °C to 1200 °C) temperature range to study the kinetics of precipitation and recrystallization. Samples of hot compression and stress relaxation tests were quenched and the evolution of the microstructure was examined using optical and scanning electron microscopy. The results indicated that DRX interacts with dynamic precipitation (DP) over the temperature range of 1173 K to 1273 K (900 °C to 1000 °C). Hot compression testing results, confirmed by EBSD analysis, indicated that partial DRX occurs before precipitation in 403Nb, at 1073 K (800 °C). By contrast, no DRX was observed in 403 steel. At higher temperatures, i.e., over 1273 K (1000 °C), DRX preceded DP in both steels. Increasing the strain rate raised the temperature range of interaction between DRX and DP up to 1373 K (1100 °C). Strain-induced precipitation (SIP) was observed over the entire range of investigated test temperatures. Static recrystallization (SRX) took place predominantly in the temperature range of 1173 K to 1373 K (900 °C to 1100 °C), at which SIP significantly delayed the SRX finishing time. The results are analyzed in the framework of the classical nucleation theory and the underlying mechanisms are identified.  相似文献   

2.
Heavy deformation of metastable austenite (below Ae3) or both austenite and ferrite in the two-phase region (between Ar3 and Ar1) is known to develop an ultrafine ferrite grain structure with an average grain size of less than 3 μm. Different dynamic softening mechanisms, such as dynamic recovery, dynamic recrystallization, and dynamic strain-induced austenite→ferrite transformation (DSIT), are responsible for such grain refinement. However, the sequence of those metallurgical events and the temperature range over which any particular mechanism dominates is not yet well understood. The current study throws some light on this aspect by applying heavy, single-pass compressive deformation (with true strain of 1.0) on the microalloyed steel samples over a temperature range of 1173 K to 873 K (900 °C to 600 °C) using a Gleeble simulator (Dynamic Systems Inc., Poestenkill, NY) and water quenching the samples immediately after deformation. The current study showed the dominating effect of the following mechanisms with respect to the deformation temperature: (1) DSIT followed by conventional dynamic recrystallization (Conv-DRX) of ferrite at higher deformation temperatures (≥1073 K [800 °C]), (2) extended recovery and continuous dynamic recrystallization (Cont-DRX) of ferrite at intermediate deformation temperatures (~1023 K [750 °C]), and (3) simple dynamic recovery of ferrite at lower deformation temperatures (≤923 K [650 °C]).  相似文献   

3.
The effects of vanadium/nitrogen additions on dynamic and static recovery and recrystallization have been studied in a set of aluminum-killed HSLA steels containing 0.1 pct carbon, 0.01 to 0.02 pct nitrogen, and either vanadium (0.1 or 0.2 pct), niobium (Cb) (0.03 pct), or vanadium and niobium together. Most, but not all, of the tests were carried out at 1173 K (900°C), a temperature at which precipitation of VN might be expected under some conditions. The net effect of dynamic recovery, recrystallization, and precipitation was monitored by measuring the change in compressive flow stress with strain at a constant temperature. Static changes were followed by measuring the change in compressive flow stress on isothermally holding unloaded specimens after a hot precompression. These kinetic data were supplemented by metallographic and electron-microscopic examinations of quenched specimens and of carbon extraction replicas taken from them. Evidence is presented which indicates that, at a holding temperature of 1173 K (900°C), static recrystallization occurs in vanadium steels containing 0.1 pct vanadium before any precipitation is detected. The progress of this recrystallization is arrested by the precipitation of vanadium nitride. At a higher vanadium concentration, 0.2 pct, recrystallization does not start. The effects of V/N ratio, austenitizing temperature (between 1373 K (1100°C) and 1523 K (1250°C), and isothermal holding temperature (between 1173 K (900°C) and 1273 K (1000°C)) on the kinetics of static softening and hardening are compared in some vanadium steels and plain-carbon and niobium steels of similar base-composition.  相似文献   

4.
Hot deformation behavior of IN-939 superalloy was investigated in this work. Hot compression experiments were performed at temperatures of 1273 K, 1323 K, 1373 K, and 1423 K (1000 °C, 1050 °C, 1100 °C, and 1150 °C) at strain rates of 0.001, 0.01, 0.1, and 1 s?1 up to a true strain of 0.8. Then variations in stress-strain curves as well as changes in microstructures of various hot-deformed samples were studied. At 1273 K to 1323 K (1000 °C to 1050 °C), dynamic recovery (DRV), and at 1373 K to 1423 K (1100 °C to 1150 °C), dynamic recrystallization (DRX), were recognized to be the main mechanisms of the alloy softening during hot compression tests. The relationships between flow stress, strain rate, and temperature were mathematically modeled with three well-known equations, and on the basis of those equations, the activation energy of hot deformation was calculated. For improvement of the proposed models, it was necessary to conduct the investigation at two temperature ranges: 1373 K to 1423 K (1100 °C to 1150 °C), in which DRX occurred, and 1273 K to 1323 K (1000 °C to 1050 °C), where DRV as well as γ′ precipitation happened. For each of the temperature ranges, a different value for activation energy was obtained, which in conjunction with the related model, can be used for simulating the deformation behavior of the alloy.  相似文献   

5.
Hot ductility tests were used to determine the hot-cracking susceptibility of two low-carbon, low Mn/S ratio steels and compared with a higher-carbon plain C-Mn steel and a low C, high Mn/S ratio steel. Specimens were solution treated at 1623 K (1350 °C) or in situ melted before cooling at 100 K/min to various testing temperatures and strained at 7.5 × 10?4 s?1, using a Gleeble 3500 Thermomechanical Simulator. The low C, low Mn/S steels showed embrittlement from 1073 K to 1323 K (800 °C to 1050 °C) because of precipitation of MnS at the austenite grain boundaries combined with large grain size. Isothermal holding for 10 minutes at 1273 K (1000 °C) coarsened the MnS leading to significant improvement in hot ductility. The higher-carbon plain C-Mn steel only displayed a narrow trough less than the Ae3 temperature because of intergranular failure occurring along thin films of ferrite at prior austenite boundaries. The low C, high Mn/S steel had improved ductility for solution treatment conditions over that of in situ melt conditions because of the grain-refining influence of Ti. The higher Mn/S ratio steel yielded significantly better ductility than the low Mn/S ratio steels. The low hot ductility of the two low Mn/S grades was in disagreement with commercial findings where no cracking susceptibility has been reported. This discrepancy was due to the oversimplification of the thermal history of the hot ductility testing in comparison with commercial production leading to a marked difference in precipitation behavior, whereas laboratory conditions promoted fine sulfide precipitation along the austenite grain boundaries and hence, low ductility.  相似文献   

6.
In the present study, bainite transformation kinetics was examined in low C-Mn steels with the addition of small amounts of B and Mo. This addition delays the onset of the bainite transformation. Mo addition causes transformation stasis at temperatures between 873 K and 823 K (600 °C and 550 °C) just below the bainite-start (B s) temperature, resulting from an incomplete bainite transformation. Post-stasis transformation after a prolonged hold proceeds by the formation of ferrite with a low dislocation density, and in Mo-containing alloys, often the formation of carbides. The volume fraction at which the transformation stops is higher for lower carbon contents and lower transformation temperatures. By contrast, at 773 K (500 °C), the bainite transformation accompanying cementite precipitation occurs regardless of microalloying and is completed after shorter hold times. EDX measurement performed on the Mo-added 0.15 pct C alloy with aberration-corrected STEM revealed that segregation at the bainite/austenite interphase boundary is small for Mn and negligible for Mo in the early stages of stasis, which does not support the incomplete transformation mechanism based on the solute drag theory for the alloys used.  相似文献   

7.
The mechanical behavior of Co-20Cr-15W-10Ni alloy is studied by compression tests at high temperature. Microstructures after deformation are evaluated using SEM-EBSD. Significant grain refinement occurs by dynamic recrystallization for high temperatures and low strain rates [T > 1373 K (1100 °C), strain rate <0.1 s?1], and at high strain rates (strain rate ~10 s?1). Dynamic recrystallization is discontinuous and occurs by nucleation of grain boundaries, leading to a necklace-like structure. The nucleation mechanism is most likely bulging of grain boundaries. However, recrystallization occurs also by rotation of annealing twins, which can bulge as well. Modeling of the observed mechanical behavior gives a fair quantification of flow softening due to dynamic recrystallization, indicating the progress of dynamic recrystallization with deformation.  相似文献   

8.
The high-temperature deformation behavior of the Ni-base superalloy, Waspaloy, using uniaxial isothermal compression testing was investigated at temperatures above the γ′ solvus, 1333 K, 1373 K, and 1413 K (1060 °C, 1100 °C, and 1140 °C) for constant true strain rates of 0.001, 0.01, 0.1, and 1 s?1 and up to a true strain of 0.83. Flow softening and microstructural investigation indicated that dynamic recrystallization took place during deformation. For the investigated conditions, the strain rate sensitivity factor and the activation energy of hot deformation were 0.199 and 462 kJ/mol, respectively. Constitutive equations relating the dynamic recrystallized grain size to the deformation temperature and strain rate were developed and used to predict the grain size and strain rate in linear friction-welded (LFWed) Waspaloy. The predictions were validated against experimental findings and data reported in the literature. It was found that the equations can reliably predict the grain size of LFWed Waspaloy. Furthermore, the estimated strain rate was in agreement with finite element modeling data reported in the literature.  相似文献   

9.
In current study, the effect of microstructure on hot ductility of nickel-free austenitic high nitrogen steel DIN EN 1.4452 was investigated. Phase transformations and precipitation were modeled as well as experimentally determined via microstructural evaluation. Hot tensile and compression tests were used to simulate the hot deformation behavior at temperatures between 1173 K and 1573 K (900 °C and 1300 °C). Hot tensile test determined the high-temperature properties. The effect of temperature on cracking sensibility during hot deformation was investigated using hot compression test. The results showed that better hot ductility is observed at temperatures ranging from 1423 K to 1523 K (1150 °C to 1250 °C). The increase of hot ductility depends on grain refinement due to dynamic recrystallization at this temperature range.  相似文献   

10.
In the present investigation, high-temperature compression tests were conducted at strain rates of 0.001 to 0.1 s?1 and at temperatures of 873 K to 1173 K (600 °C to 900 °C) in order to study the hot deformation characteristics and dynamic softening mechanisms of two different grades of commercial purity titanium after severe plastic deformation. It was observed that the effects of deformation rate and temperature are significant on obtained flow stress curves of both grades. Higher compressive strength exhibited by grade 2 titanium at relatively lower deformation temperatures was attributed to the grain boundary characteristics in relation with its lower processing temperature. However, severely deformed grade 4 titanium demonstrated higher compressive strength at relatively higher deformation temperatures (above 800 °C) due to suppressed grain growth via oxygen segregation limiting grain boundary motion. Constitutive equations were established to model the flow behavior, and the validity of the predictions was demonstrated with decent agreement accompanied by average error levels less than 5 pct for all the deformation conditions.  相似文献   

11.
The evolution of microstructure during the hot working of steels microalloyed with Nb is governed by the recrystallization kinetics of austenite and the recrystallization-precipitation interaction. The present study focuses on the effects of prestrain and deformation temperature on the rectrystallization behavior in these steels. The extent of recrystallization is characterized by a softening parameter calculated from a series of interrupted plane strain compression tests carried out at different deformation temperatures and strain levels. The results indicate that at low temperatures, softening is caused by static recovery, while at higher temperatures, static recrystallization is the predominant mechanism. The recrystallization-stop temperature (T 5pct) and the recrystallization-limit temperature (T 95pct), marking the beginning and end of recrystallization, respectively, are determined as a function of strain. In order to achieve a homogeneous microstructure, finish rolling should be carried out outside the window of partial recrystallization (T 5pct<T<T 95pct), as determined in this study. The Nb(CN) precipitation kinetics have been calculated using a model proposed in an earlier work, and these results are used to estimate the precipitate pinning force under the given processing conditions. Based on these estimations, a criterion has been proposed to predict the onset of recrystallization. The predicted results are found to be in reasonably good agreement with the experimental measurements.  相似文献   

12.
Industrial mill logs from seven different hot strip mills (HSMs) were analyzed in order to calculate the mean flow stresses (MFSs) developed in each stand. The schedules were typical of the processing of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. The calculations, based on the Sims analysis, take into account work roll flattening, redundant strain, and the forward slip ratio. The measured stresses are then compared to the predictions of a model based on an improved Misaka MFS equation, in which solute effects, strain accumulation, and the kinetics of static recrystallization (SRX) and metadynamic recrystallization (MDRX) are fully accounted for. Good agreement between the measured and predicted MFSs is obtained over the whole range of rolling temperatures. The evolution of grain size and the fractional softening are also predicted by the model during all stages of strip rolling. Special attention was paid to the Nb steels, in which the occurrence of Nb(C, N) precipitation strongly influences the rolling behavior, preventing softening between passes. The present study leads to the conclusion that Mn addition retards the strain-induced precipitation of Nb; by contrast, Si addition has an accelerating effect. The critical strain for the onset of dynamic recrystallization (DRX) in Nb steels is derived, and it is shown that the critical strain/peak strain ratio decreases with increasing Nb content; furthermore, Mn and Si have marginal but opposite effects. It is demonstrated that DRX followed by MDRX occurs under most conditions of hot strip rolling; during the initial passes, it is due to high strains, low strain rates, and high temperatures, and, in the final passes, it is a consequence of strain accumulation.  相似文献   

13.
Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s?1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of ~?90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent ‘n’ of the base metal and weldment was ~?0.519. Activation energy ‘Q’ of base metal and EB weldments were 420 to 535 kJ mol?1 determined through isothermal tensile tests and 625 to 662 kJ mol?1 through jump-temperature tensile tests. Strain rate sensitivity ‘m’ was low (<?0.119) for the base metal and (<?0.164) for the weldment. The δ phase was revealed in specimens annealed at 700 °C, whereas, twins and fully recrystallized grains were observed in specimens annealed at 1025 °C. Low-angle misorientation and strain localization in the welds and the HAZ during tensile testing at higher temperature and strain rates indicates subgrain formation and recrystallization. Higher elongation in the weldment (at Test temperature >?775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.  相似文献   

14.
The high-temperature austenite phase of a high-interstitial Mn- and Ni-free stainless steel was stabilized at room temperature by the full dissolution of precipitates after solution annealing at 1523 K (1250 °C). The austenitic steel was subsequently tensile-tested in the temperature range of 298 K to 503 K (25 °C to 230 °C). Tensile elongation progressively enhanced at higher tensile test temperatures and reached 79 pct at 503 K (230 °C). The enhancement at higher temperatures of tensile ductility was attributed to the increased mechanical stability of austenite and the delayed formation of deformation-induced martensite. Microstructural examinations after tensile deformation at 433 K (160 °C) and 503 K (230 °C) revealed the presence of a high density of planar glide features, most noticeably deformation twins. Furthermore, the deformation twin to deformation-induced martensite transformation was observed at these temperatures. The results confirm that the high tensile ductility of conventional Fe-Cr-Ni and Fe-Cr-Ni-Mn austenitic stainless steels may be similarly reproduced in Ni- and Mn-free high-interstitial stainless steels solution annealed at sufficiently high temperatures. The tensile ductility of the alloy was found to deteriorate with decarburization and denitriding processes during heat treatment which contributed to the formation of martensite in an outermost rim of tensile specimens.  相似文献   

15.
The static recrystallization of 316LN austenitic stainless steel was studied by double-pass hot compression tests on a Gleeble-3500 thermomechanical simulator. The specimens were compressed at the deformation temperatures of 950, 1050, 1150 °C, strain rates of 0.01, 0.1, 1s?1, strains of 0.1, 0.15, 0.2, and intervals of 1 — 100 s. The results show that the volume fraction of static recrystallization of 316LN increases with the increase of deformation temperature, strain rate, strain and interval, which indicates that static recrystallization occurs easily under the conditions of higher deformation temperature, higher strain rate and larger strain. Deformation temperature has significant influence on static recrystallization of 316LN. The volume fraction of static recrystallization could easily reach 100% at higher deformation temperatures. By microstructure analysis, it can be concluded that the larger the volume fraction of static recrystallization, the more obvious the grain refinement. The static recrystallization activation energy of 317 882 J/mol and the exponent n of 0.46 were obtained. The static recrystallization kinetics was established. The predicted volume fraction of static recrystallization is in good agreement with the experimental results.  相似文献   

16.
The effect of titanium addition on the dynamic recrystallization behaviour of steels has been investigated. Constant strain rate tension tests were conducted in vacuum in the temperature range from 925 to 1225°C. Dynamic recrystallization-time-temperature (RTT) curves were developed from the flow curves at ε? = 1 × 10?2s?1. The results of the different steels with and without Ti indicate that the onsets of dynamic recrystallization in all the steels are earlier at higher temperatures than at lower temperatures and the addition of titanium may shift the RTT curve of the C–Mn–Si steel towards the right, i.e. retard dynamic recrystallization. The retarding effect of Ti becomes more intensive at temperatures below about 1075°C where a transition of the RTT relationship occurs. Microstructural examinations show that titanium dissolved in austenite can retard the dynamic recrystallization and the precipitation of TiC produces a more intensive retarding effect.  相似文献   

17.
Effect of alloying elements on metadynamic recrystallization in HSLA steels   总被引:3,自引:0,他引:3  
By means of interrupted torsion tests, the kinetics of metadynamic recrystallization (MDRX) were studied in a Mo, a Nb, and a Ti microalloyed steel at temperatures ranging from 850 °C to 1000 °C and strain rates from 0.02 to 2 s1. Quenches were also performed after full MDRX. In contrast to the case of static recrystallization (SRX), the kinetics of MDRX are shown to be highly sensitive to a change of an order of magnitude in strain rate and are relatively insensitive to temperature changes within the range of values applicable to industrial hot-rolling practice. A similar algebraic dependence of the MDRX grain size on strain rate and temperature was found in the three steels. The kinetics of MDRX were slower in the Nb than in the Mo steel, and those of the Ti steel were slower than in the Nb and Mo steels. Above 900 °C and 950 °C, the retardation of MDRX in the Nb and Ti steels, respectively, is due to solute drag. Models predicting the start time for Nb and Ti carbonitride precipitation showed that MDRX is delayed below these temperatures by this mechanism. Comparison of the MDRX and precipitation start times in the Nb steel indicated that a temperature of “no-MDRX” could not be defined, in contrast to the well-definedT nr (no recrystallization temperature) of SRX. By means of torsion simulations composed of multiple interruptions, it is shown that MDRX is retarded decreasingly as the accumulated strain is increased. This appears to be due to the promotion of precipitate coarsening by the continuing deformation.  相似文献   

18.
The fundamental nature of the static restoration processes which result in static softening after a hot deformation has been studied in copper and aluminum. The kinetics of static softening were determined using the double-hit technique applied to hot compression while the microstructural changes were characterized by the quantitative metallography of quenched specimens. A static softening parameter based on the area under the compression flow curve was used to describe the static softening kinetics. The static softening curves exhibited a simple sigmoidal shape showing no inflection. The relative softening occurring prior to the initiation of recrystallization was found to be small when compared with that occurring after the onset of recrystallization, and was dependent on deformation temperature, amount of deformation, purity and stacking fault energy. The static softening was related to the fractional recrystallization in a nonlinear manner; the degree of nonlinearity was dependent on the occurrence of recovery and dynamic recrystallization. The recrystallization process in Al was of the classical type with the nucleation stage being either the boundary bulge or subgrain growth mechanism. In Cu twinning appeared to be the major nucleation mechanism for recrystallization. When the applied prestrain was greater than the critical strain for dynamic recrystallization, recrystallization was observed to be completed before the completion of static softening. In this case, the remaining softening occurred by the operation of multiple recrystallization where high-order twins formed in the already twinned regions.  相似文献   

19.
The effect of molybdenum, niobium, and vanadium on the occurrence of static recovery and recrystallization after high temperature deformation was investigated in a series of microalloyed steels. The steels had a base composition of 0.05 pct C and 1.40 pct Mn. To this, single additions of 0.30 pct Mo, 0.035 pct Nb, and 0.115 pct V were made. Interrupted hot compression tests were performed at 900 and 1000 °C, and at a constant true strain rate of 2 s-1. The load-free time was decreased from 5000 s to 50 ms, and the degree of static softening during this period was determined. Both graphite and glass were used as lubricants. Percent softeningvs delay time curves are presented and the retarding effect of molybdenum, niobium, and vanadium addition on the rate of static recovery and recrystallization is discussed. The greatest solute retardation of static recovery and recrystallization is produced by niobium addition, followed by that of molybdenum, vanadium leading to the smallest delay. Although the rank order of this effect is the same as found under dynamic softening conditions, the relative contribution of niobium is more profound for the static condition. The solute strengthening attributable to each element was also assessed, and found to follow the same order as for the recovery and recrystallization results. At 900 °C, the onset of the static precipitation of Nb (CN) was detected at approximately 10 seconds, somewhat earlier than previously reported. Formerly Graduate Student at McGill University, Montreal, Quebec.  相似文献   

20.
Hot Deformation Behavior of Beta Titanium Ti-13V-11Cr-3Al Alloy   总被引:1,自引:0,他引:1  
Hot compression tests were conducted on Ti-13V-11Cr-3Al beta-Ti alloy in the temperature range of 1203 K to 1353 K (930 °C to 1080 °C) and at strain rates between 0.001 and 1 s?1 The stress–strain curves showed pronounced yield point phenomena at high strain rates and low temperatures. The yield point elongation and flow stresses at the upper and lower yield points were related to the Zener–Hollomon parameter. It was found that dynamic recovery at low strain rates and dynamic recrystallization at high strain rates were the controlling mechanisms of microstructural evolution. The results also showed that strain rate had a stronger influence on the hot deformation behavior than temperature. The microstructural observations and constitutive analysis of flow stress data supported the change in the hot deformation behavior of the studied alloy varies with strain rate. For various applied strain rates, the activation energy for hot deformation was calculated in range of 199.5 to 361.7 kJ/mol. At low strain rates (0.001 and 0.01 s?1), the value of activation energy was very close to the activation energy for the diffusion of V, Cr, and Al in beta titanium. The higher value of activation energy for deformation at high strain rates (0.1 and 1 s?1) was attributed to the accumulation of dislocations and the tendency to initiate dynamic recrystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号