首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在小型固定流化床装置上,以减压蜡油为原料,采用含Y型分子筛和择形分子筛两种活性组分的催化剂,考察了进料空速和剂油比等操作条件对液化气产率和组成的影响。结果表明:降低进料空速和增大剂油比都能够提高重油转化率和液化气产率,但两者对液化气组成的影响却截然不同;降低空速导致液化气丙烯含量提高,而增大剂油比却导致液化气丙烯含量降低;降低进料空速有利于催化剂中择形分子筛内的化学反应,增大剂油比则有利于催化剂中Y型分子筛内的化学反应。  相似文献   

2.
多产丙烯的催化裂化技术   总被引:4,自引:0,他引:4  
从催化裂化反应机理出发,探讨了流化催化裂化(FCC)装置增产丙烯的措施,如选择合适的原料类型、反应温度、剂油比、反应时间、催化剂及助剂等,其中添加ZSM-5助剂是提高丙烯产率的最有效因素之一;并介绍了近年来国内外多产丙烯的FCC工艺的特点及应用。  相似文献   

3.
4.
在小型固定流化床装置上,考察了反应温度和催化剂/原料(剂油比,质量比,下同)对催化裂化汽油含苯体积分数及族组成的影响。结果表明,在反应重时空速为4 h-1,剂油比为4的条件下,随着温度由520℃提高到600℃,汽油中苯体积分数增加了164%,总芳烃体积分数增加了34%;随着反应温度的升高,C9和C10芳烃体积分数先增加后降低,C11芳烃体积分数单调下降。另外,在温度为560℃,重时空速为4 h-1的条件下,随剂油比增加,汽油中含苯体积分数、总芳烃体积分数增大。  相似文献   

5.
生产清洁汽油组分并增产丙烯的催化裂化工艺   总被引:22,自引:13,他引:22  
生产汽油组分满足欧Ⅲ排放标准,又能增产丙烯的流化催化裂化工艺--MIP-CGP,在多产异构烷烃的催化裂化工艺基础上被提出。依据生产方案要求,研究了工艺条件和开发专用催化剂CGP-1,并在中型试验装置上进行该工艺探索试验。中型试验结果表明,在该反应系统中,用大庆重质原料油,可以生产出烯烃体积分数低于18%的汽油,同时还能生产丙烯,产率达9.20%。  相似文献   

6.
介绍了催化裂化( FCC)工艺增产丙烯的主要思路,围绕这些思路综述了增产丙烯的工艺改造进展.包括深度催化裂化(DCC),催化热裂解技术(CPP),重质油接触裂解(HCC),PetroFCC,选择性组分裂化(SCC),Maxofin,高苛刻度FCC(HS-FCC),Superflex等工艺,并将这些工艺流程特点、使用的催化剂、产品分布和烯烃产品收率与常规FCC工艺相比较,结果表明,丙烯收率均有明显提高.并指出通过FCC工艺技术改造增产丙烯是适合当前我国国情的技术路线.  相似文献   

7.
世界丙烯需求的年增长率高于乙烯,蒸汽裂解装置的丙烯与乙烯比限制在0.65左右,提高此比例,则烯烃总产率下降,不甚经济。 林德公司开发的固定床催化裂化(FBCC)工艺,采用C_4馏分或汽油馏分(C_4/C_5)可提高蒸汽裂解的丙烯、乙烯比。该工艺采用择形多相沸石分子筛催化剂(ZSM-5型),  相似文献   

8.
多产丙烯的催化裂化工艺技术探讨   总被引:21,自引:1,他引:21  
从催化裂化反应机理出发,分析了催化裂化过程中影响丙烯产率的因素,如原料类型、反应温度、剂油比、反应时间、催化剂及助剂等的影响,其中ZSM-5助剂是提高丙烯产率的最有效因素之一。介绍了几种多产丙烯的FCC工艺,如Maxofin,PetroFCC,DCC,SCC等的特点及其应用。通过分析认为,利用催化裂化装置实现多产丙烯与多产汽油、多产柴油、多产液化石油气等多种操作模式是可行的,可增强适应市场变化的能力。  相似文献   

9.
为解决中国石油宁夏石化公司260万t/a催化裂化(FCC)装置汽油烯烃含量偏高的问题,对装置生产操作条件和催化剂进行了调整。结果表明:通过采用提高剂油质量比,增加油气分压,增大催化剂加入量等措施后,FCC汽油烯烃体积分数降低至35%以下,辛烷值保持在90.0以上,满足了国Ⅵ汽油的要求。  相似文献   

10.
改变剂油比对催化裂化工艺的影响   总被引:8,自引:1,他引:8  
本文叙述了剂油比在催化裂化装置操作中的重要地位,着重论述了改变剂油比对催化裂化反应、反应-再生两器热平衡化及催化剂性能的影响。在实际生产中,适时调整剂油比使装置适应不同性质的原料、生产不同的产品、提高装置的适应弹性,最大程度地发挥装置的作用,提高经济效益具有重大意义。  相似文献   

11.
利用小型固定流化床(FFB)装置,采用MMC-2催化剂,考察汽油族组成对汽油催化裂化反应过程中干气生成的影响。结果表明,汽油催化裂化反应过程中干气主要由催化裂化反应产生,热裂化反应产生的干气所占的比例很低。随着汽油原料中烯烃含量的增加,氢气、甲烷和乙烷的产率基本保持不变,乙烯的产率明显增加。烷烃引发反应时形成的五配位正碳离子的裂解反应生成氢气、甲烷、乙烷和乙烯等干气组分。烯烃质子化形成的三配位伯正碳离子可能直接发生β裂解生成乙烯。伯正碳离子直接发生β裂解的反应和先发生异构化生成仲正碳离子再发生β裂解反应的比值是固定的。  相似文献   

12.
在催化裂化反应条件下,研究了异丙苯主要裂化反应路径以及反应过程中反应温度和分子筛类型对苯产率和选择性的影响规律。结果表明,异丙苯裂化中的主要反应为脱烷基反应和侧链质子化裂化反应,苯主要来自异丙苯的脱烷基反应;高温和择形分子筛有助于提高异丙苯裂化生成苯的产率和选择性;在反应温度为550℃、质量空速为8h-1、剂油质量比为6的条件下,异丙苯在择形分子筛催化剂上裂化生成苯的产率和选择性分别可达40%和55%以上。  相似文献   

13.
ZRP沸石对FCC汽油催化裂解产丙烯的影响   总被引:3,自引:0,他引:3  
 本文研究了550℃,常压,加有水蒸气条件下,FCC汽油在ZRP沸石上的催化裂解反应,研究了ZRP硅铝比变化和稀土改性ZRP对反应的影响。通过实验结果分析和反应前后反应物与产物分布的计算研究表明,丙烯生产是通过FCC汽油中烯烃进行裂化反应实现的。提高烯烃的选择转化率、促进裂化反应和提高丙烯产品的选择性将有利于丙烯产量的增加。提高ZRP沸石硅铝比能够增加沸石的强酸量,提高烯烃的转化率,提高低碳烯烃的选择性,但丁烯选择性高于丙烯的选择性。稀土改性的ZRP沸石能够增加强酸量,提高烯烃的转化率,提高丙烯的产品选择性。  相似文献   

14.
重油催化裂解过程中的丙烯生成规律研究   总被引:2,自引:0,他引:2  
在实验室微型固定床装置上,考察了重油催化裂解过程中的裂解反应规律;通过分析正碳离子的生成与裂解反应特点,探讨了丙烯的生成规律。结果表明,转化率小于80%时的裂解反应,生成的正碳离子可高效裂解为丙烯,对丙烯产率的贡献在90%以上,是丙烯的主要来源;转化率大于80%时的裂解反应,生成的正碳离子裂解为丙烯的能力则大大下降,同时生成大量的干气和焦炭等非理想产品。  相似文献   

15.
分析了典型焦化汽油烃类组成特点,重点研究焦化汽油催化裂解反应过程中反应转化率以及低碳烯烃的产率和选择性的主要影响因素。结果表明,催化裂解反应条件下焦化汽油转化率较低,提高反应温度是提高低碳烯烃产率的有效手段,但是目标产物的选择性变化不大;采用高选择性的催化剂可以在提高乙烯和丙烯产率的同时提高其选择性,并达到少产丁烯的目的。焦化汽油的正构烷烃转化程度低,尤其是C5~C7正构烷烃转化程度不足60%,是因其分子碳链短,所形成的正碳离子的β断裂反应不易发生所致。  相似文献   

16.
在焦化蜡油中加入WLDN-5脱氮剂,采用络合脱氮—白土精制工艺,可制备碱性氮化物含量较低的焦化蜡油。在某公司1.80 Mt/a重油催化裂化装置进行掺炼脱氮前后焦化蜡油对催化裂化反应性能的影响工业应用试验,结果表明,掺炼脱氮焦化蜡油后,降低原料油中氮含量使催化剂保持较高活性和减少催化剂生焦,在较低的反应温度下,改善产品分布,轻油收率增加0.86个百分点,总液体收率增加2.03个百分点,液化气和汽油收率分别增加1.17,0.94个百分点,干气、油浆和焦炭收率相应减少0.37,1.25,0.41个百分点,催化剂单耗降低0.05 kg/t。  相似文献   

17.
丁烯催化裂解制取丙烯及乙烯的研究   总被引:7,自引:2,他引:7  
探索了丁烯催化转化为丙烯、乙烯的反应特点。通过对正丁烯和异丁烯催化裂解反应结果的考察,发现丁烯主要通过二聚,再通过裂解反应生成丙烯和乙烯。丁烯转化主要在分子筛孔内进行,高硅中孔分子筛特殊的孔道结构和较低的酸密度,不利于氢转移反应而有利于将丁烯高选择性地转化为丙烯等目的产品。  相似文献   

18.
以催化裂化汽油为原料在不同类型的催化剂上进行了催化转化试验,探讨了不同类型的氢转移反应在烯烃转化中的作用。结果表明,汽油烯烃在不同类型的催化剂上发生裂化反应强弱及其与氢转移反应之比大小是不同的;再生催化剂有利于裂化反应,有利于提高裂化反应与氢转移反应之比;较高的反应温度和较高的重时空速有利于裂化反应,有利于提高裂化反应与氢转移反应之比。  相似文献   

19.
在直馏石脑油催化裂解(SNCC)技术开发过程中,发现原料中链烷烃转化率始终难以大幅提高,仅保持在52.58%~77.07%,对低碳烯烃产率存在较明显的限制。本研究采用基于密度泛函理论的分子模拟计算方法,构建了正辛烷、2-甲基庚烷和2,5-二甲基己烷3种直馏石脑油馏分链烷烃模型化合物的催化裂解反应网络,并分别提出了正构烷烃和异构烷烃理想的链反应引发途径和反应方向,发现反应体系中存在的高供氢活性的环烷烃等烃类会通过负氢离子转移反应抑制链烷烃转化,从而导致链烷烃转化率较低。通过引入新型有特定孔道结构的IM-5分子筛催化剂,可有效强化SNCC过程中链烷烃的选择性催化裂解。  相似文献   

20.
催化裂化生成干气的反应机理研究   总被引:5,自引:1,他引:5  
 以4-甲基辛烷、4- 乙基辛烷为模型化合物,采用分子模拟技术,研究了催化裂化过程生成干气的反应化学。结果表明,烷烃分子首先在催化剂酸性中心作用下发生质子化反应,烷烃分子链上易受到氢质子进攻的位置一般在其叔碳原子或碳链中心碳原子附近的C-H键或C-C键处,形成反应过渡态-五配位正碳离子,反应过渡态主要以桥式结构形式存在,随后共价键的异裂主要发生在烷烃分子链上桥式活化结构α位的C-H键或C-C键处,前者异裂生成H2,当后者相连的是小于碳三的小分子基团时,异裂就会生成CH4、C2H6、C2H4等干气分子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号