首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对苏州工业园区第二污水处理厂总氮(TN)指标不能稳定达到新标准的问题,设计开发出多模式切换的AAO工艺运行方式.通过多点分配进水、倒置内回流、延长缺氧区水力停留时间(HRT)以及正置、倒置等不同模式切换相结合的方式,根据季节变化对厌氧-缺氧-好氧工艺系统进行调整,优化碳源分配,寻找便于操作的高效脱氮工艺运行模式,提高...  相似文献   

2.
尹航  何理  卢健聪  高辉  高大文 《化工学报》2014,65(6):2294-2300
采用自主设计的悬浮载体生物膜/颗粒污泥耦合装置,利用硝化菌载体生物膜和反硝化聚磷菌颗粒污泥,研究水力停留时间对生物膜/颗粒污泥耦合工艺脱氮除磷的影响,得出最佳工艺参数。试验考查水力停留时间分别为6 h、7 h、8.5 h和10.5 h,结果表明,当水力停留时间为8.5 h时,系统的COD去除率为91.26%,氨氮和总氮的去除率分别为80.68%和70.58%,厌氧释磷速率也较稳定,为0.47 mg P·(g SS)-1·h-1,厌氧释磷速率最高,其碳源利用率最大,反硝化除磷效率最稳定,PO43--P去除率为76.50%,反硝化除磷效率为1.04 mg P·(mg NO3--N)-1,所以当水力停留时间为8.5 h时,系统具有较高的脱氮除磷效率。当水力停留时间过短时,氮磷的去除不完全,过长时,系统不稳定,系统的最优水力停留时间为8.5 h。  相似文献   

3.
采用自主设计的悬浮载体生物膜/颗粒污泥耦合装置,利用硝化菌载体生物膜和反硝化聚磷菌颗粒污泥,研究水力停留时间对生物膜/颗粒污泥耦合工艺脱氮除磷的影响,得出最佳工艺参数。试验考查水力停留时间分别为6 h、7 h、8.5 h和10.5 h,结果表明,当水力停留时间为8.5 h时,系统的COD去除率为91.26%,氨氮和总氮的去除率分别为80.68%和70.58%,厌氧释磷速率也较稳定,为0.47 mg P·(g SS)-1·h-1,厌氧释磷速率最高,其碳源利用率最大,反硝化除磷效率最稳定,PO43--P去除率为76.50%,反硝化除磷效率为1.04 mg P·(mg NO-3-N)-1,所以当水力停留时间为8.5 h时,系统具有较高的脱氮除磷效率。当水力停留时间过短时,氮磷的去除不完全,过长时,系统不稳定,系统的最优水力停留时间为8.5 h。  相似文献   

4.
段凯波 《净水技术》2023,(5):77-83+115
针对传统普通强化脱氮AO工艺总氮(TN)去除率较低的问题,采用规模为5万m3/d的生物反应池开展试验。在保持总池容不变的条件下重新分配缺氧段和好氧段的池容,将其改进为“缺氧-好氧-缺氧-好氧”结构的多级AO脱氮工艺。改造后实现缺氧段水力停留时间从4.44 h提高至7.45 h,好氧段从6.70 h降低至3.69 h,新增缺氧段底部采用曝气可调和推流搅拌技术。同时采用基于DO浓度布设液态碳源投加点技术,进一步提高碳源利用率。实践结果表明,2021年多级AO工艺平均出水TN质量浓度为11.9 mg/L,平均TN去除率为61.5%,最高达77.8%,平均TN去除率比普通强化脱氮工艺下的47.6%提高了约29.2%,具有更好的脱氮效果,能实现出水TN和氨氮《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级A稳定达标排放,同时具有一定的节能降耗效应。  相似文献   

5.
七里店污水净化厂采用微孔曝气Carrousel氧化沟工艺,单座氧化沟日处理量达到改造工程设计规模的2倍,氧化沟水力停留时间约为5 h。进水BOD5/TP平均为19.86,碳源基本满足聚磷菌释磷的要求;氧化沟分为缺氧区和好氧区,没有严格的厌氧区,但TP去除率高;温度对生物除磷无明显影响。系统BOD5/TN偏低、氧化沟水力停留时间短是影响系统脱氮效果的重要因素;温度对生物脱氮有显著的影响,生物脱氮效率随着温度的下降而降低。二沉池出水氨氮、TP浓度比进水高,二沉池明显的磷释放现象和氨化现象对系统脱氮除磷的效果影响大。  相似文献   

6.
林明  刘雷  王磊  毛克威  左晶  梅立永 《水处理技术》2022,(9):129-133+137
为研究缺氧/好氧-移动床生物膜反应器组合工艺及设备对生活污水的处理效果,构建了 A/O-MBBR 实验装置。实验研究了不同水力停留时间、曝气强度、硝化液回流比和外加碳源浓度条件下 A/O-MBBR系统对污染物的净化效果,同时对比了不同表面负荷下固液分离区的泥水分离效果。结果表明:进水污染物浓度较低时,进水外加碳源的同时缩短水力停留时间,系统出水 COD、NH3-N 和 TN 均能稳定达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准;进水污染物浓度较高时,不需外加碳源,增大水力停留时间和硝化液回流比后,系统出水COD、NH3-N 和 TN 亦能稳定达到一级 A 标准。系统具备良好的泥水分离效果,出水 SS 达标率为 97%。无动力污泥回流和向好氧区中投加改性悬浮生物填料能够显著增加生化区微生物总量,从而强化系统的污染物去除效果。  相似文献   

7.
王艳 《广东化工》2022,(20):127-129
对于低碳氮比的污水,在不外加碳源的情况下,以PHAs缓释碳源作为垂直流人工湿地的反硝化脱氮填料,通过对垂直流人工湿地的不同进水碳氮比、水力停留时间等条件进行优化,研究缓释碳源对人工湿地脱氮效果的影响。结果表明:整体上,PHAs缓释碳源的释碳速率及可控性均较好,能很好地起到提高碳氮比的作用,对于进水C/N比为3.5和3.0的污水脱硝态氮效果最佳,可达80%以上;对于不同的水力停留时间,综合经济性及反硝化脱氮效果,最佳水力停留时间为1.5 d。  相似文献   

8.
以生活污水为处理对象,采用碳纤维填料制成序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),采用N_2+O_2联合曝气的方式,通过改变N_2和O_2的比例,稳定系统内DO浓度为1.5 mg/L,考察不同曝气强度(30、20和10 L/h)下系统脱氮性能及N_2O释放特性。异养菌和硝化菌共生于生物膜内,异养菌位于外层,硝化菌位于内层,曝气强度降低有利于外部异养菌大量增殖,生物膜厚度增加。曝气强度为30 L/h和10 L/h条件下,SBBR系统NH_4~+-N去除率分别为95%以上和79.2%±1.6%,同步脱氮效率分别为46.2%±2.6%和62.1%±2.3%,N_2O产率分别为6.25%±0.6%和2.93%±0.43%。缺氧阶段,反硝化过程和PHA(聚β–羟基烷酸酯)积累同时发生;好氧阶段,PHA呈先增加后减少的趋势。初始阶段增加的PHA为后续同步发生的反硝化过程提供了电子供体。AOB的好氧反硝化过程和异养菌反硝化过程均可导致N_2O的产生。曝气强度降低导致水力剪切力下降,生物膜内缺氧范围扩大,缺氧区N_2O停留时间延长,利于其反硝化减量。曝气强度由30 L/h降至10 L/h,微生物胞外聚合物(EPS)分泌减少,PS/PN(多糖/蛋白质)由8.59 mg/mg降至6.58 mg/mg,生物膜致密性降低,碳源和N_2O以扩散形式进入缺氧区域能力增强,N_2O释放量降低。  相似文献   

9.
不同碳源对冷轧不锈钢废水生物脱氮的影响研究   总被引:1,自引:0,他引:1  
林桂炽  黄玲珍 《广东化工》2007,34(1):77-78,97
本文以SBR为主体处理过程,对分别以葡萄糖、甲醇、乙酸为碳源时反硝化脱氮过程进行研究,结果表明,以乙酸为碳源的SBR系统在水力停留时间为2.5 d时,NO3-N脱氮速率和去除率可达16.67 mg NO3-N/(L.h)和94.7%,可实现高浓度硝酸根废水处理出水硝酸氮浓度小于50 mg/L。  相似文献   

10.
针对南方城市污水C\N较低的特点以及现有脱氮除磷工艺脱氮除磷效率不高的缺点,设计了一套高效脱氮除磷工艺来强化脱氮除磷的中试装置。本工艺以广州市石井污水处理厂细格栅出水作为处理对象,针对不同工艺参数的除磷效果进行研究,并对各种因素进行组合实验。实验研究结果表明,当好氧池末端的溶解氧质量浓度为1.5mg/L,水力停留时间(HRT)为8h,硝化液回流比为200%,缺氧混合液回流比为150%,体积比为1:2.6:6.4时,高效脱氮除磷工艺对有机物和总磷的处理效果最佳,出水平均COD为32.04 mg/L,TP的平均质量浓度为0.35mg/L,去除率分别为81.32%和85.60%,达到城镇污水处理厂污染物排放标准1级A标准,取得了较好的除磷效果,并且系统抗冲击负荷能力强,装置运行稳定。  相似文献   

11.
采用水解酸化-厌氧-改良Carrousel氧化沟组合工艺,通过前置水解酸化调控、氧化沟水力停留时间调控、二沉池污泥回流比调控等工艺,进行了为期8个月的混合型城市污水脱氮中试研究。结果表明,中试进水COD、NH3-N和TN的平均质量浓度分别为557、29.0、40.1 mg/L,总水力停留时间为17.5 h、污泥回流比为1、DO平均质量浓度控制在2~4 mg/L之间及无外加碳源和碱度的条件下,出水COD、NH3-N和TN的平均质量浓度分别为54.9、2.8、12.6 mg/L,对COD、NH3-N和TN的平均去除率分别达到了90.1%、90.3%和68.6%。采用水解酸化-厌氧-改良Carrousel氧化沟组合工艺,处理混合型城市污水的效果良好、稳定可靠。  相似文献   

12.
以考察分段进水一体化工艺脱氮的影响因素及脱氮能力为目的,研究了进水流量比(厌氧区∶缺氧区)、好氧区溶解氧(DO)浓度、水力停留时间(HRT)(固定厌氧区和缺氧区进水流量比为3∶1)对工艺的同步硝化反硝化(SND)的影响,同时运用动力学模型对工艺的脱氮能力进行了模拟分析。试验结果表明:厌氧区和缺氧区进水量比为3∶1时,总氮去除率最高,平均去除率在86%以上;好氧区DO质量浓度约为2.0 mg/L时,总氮去除率最高,平均去除率在85%以上;保持厌氧区和缺氧区进水流量比为3∶1, HRT为12 h时,总氮去除率最高,平均去除率在86%左右;对脱氮动力学进行了研究,反硝化速率方程为R=-1.87×10-3X,总氮降解常数为1.87×10-3 h-1。  相似文献   

13.
A~2/O工艺强化反硝化除磷控制策略研究   总被引:1,自引:0,他引:1  
在传统A2/O工艺的基础上,通过设立预缺氧区(即建立A-A2/O工艺)、外加碳源等手段,强化A2/O工艺处理低C/N生活污水的脱氮除磷能力。试验结果表明,经过强化后的A2/O反应器对COD、TN及TP去除效果良好,COD、TN及TP的去除率分别为92%、98%、85%。系统表现出明显的反硝化除磷现象,缺氧区除磷量占总除磷量的17.18%。反硝化除磷现象的产生降低了碳源缺乏对A2/O工艺脱氮除磷性能的影响,提高碳源的利用效率。为采用A2/O工艺处理低C/N生活污水的污水处理厂提供理论依据。  相似文献   

14.
对比分析了反硝化颗粒污泥系统和反硝化生物膜系统在不同进水条件和不同水力停留时间(HRT)下的脱氮效果。结果表明,当进水COD较高即外部碳源较为充足时,反硝化颗粒污泥系统和反硝化生物膜系统脱氮效果接近;而当进水总氮浓度较高即外部碳源受限时,生物膜系统的脱氮效果优于颗粒污泥系统。在不同的HRT条件下(3~6 h),反硝化生物膜系统的深度脱氮效果均优于反硝化颗粒污泥系统,且当HRT=5 h时,两系统的脱氮性能均达到最高。实验结果表明反硝化生物膜系统在脱氮性能方面略胜一筹。但是,结合经济性和去除性能进一步分析可知,与生物膜系统相比,颗粒污泥系统具有占地面积小、无载体成本等低成本的显著优势,在既有工艺出水深度脱氮的工程实践中,可优先选择反硝化颗粒污泥工艺,并可通过控制颗粒粒径和系统运行参数等措施强化脱氮性能。  相似文献   

15.
A2O工艺处理低C/N比生活污水的试验研究   总被引:12,自引:2,他引:10       下载免费PDF全文
吴昌永  彭永臻  彭轶 《化工学报》2008,59(12):3126-3131
采用52.5 L的A2O试验装置处理实际生活污水,研究了A2O工艺在处理低C/N比生活污水时的脱氮除磷特性,并探讨了如何通过强化缺氧吸磷来提高系统的脱氮除磷效率。试验结果表明:在厌氧/缺氧/好氧体积比为1/1/2、HRT为8 h、污泥回流比为70%、内回流比为300%的工况下处理C/N为7.89的生活污水,TN和SOP去除率分别能够达到85.4%和93.3%,系统中存在反硝化除磷,缺氧吸磷占总吸磷量的25.3%。同样的运行条件下处理C/N为4.20的生活污水时,SOP去除几乎不受影响,但TN去除率降低至62.2%,平均出水TN浓度也超过20 mg•L-1。维持厌氧区体积不变,增大缺氧区体积,使得缺氧/好氧体积比为5/8时,TN去除率可上升到70.7%,缺氧吸磷占总吸磷量的55.2%。同时改变内回流比的试验表明250%的内回流比能最大程度地强化反硝化除磷的作用,此时TN去除率可提高至77.3%。强化A2O工艺中的反硝化除磷,能克服碳源不足对脱氮除磷的影响,显著提高低C/N比污水的脱氮除磷效率。  相似文献   

16.
煤化工废水生化处理出水仍含有大量有毒和难降解污染物,对环境具有严重的危害,采用缺/好氧移动床生物膜反应器(ANMBBR-MBBR)复合生物短程脱氮技术对煤化工废水进行深度处理。试验结果表明,生物组合工艺有效缓解了废水有毒抑制物和低碳氮比对生物脱氮工艺的负面作用,最佳运行条件为水力停留时间12 h,硝态氮/亚硝态氮混合液回流比200%,该工艺对COD、氨氮和总氮的去除率分别为68.1%、84.0%和74.7%,相应的出水浓度分别为48.0、4.8和13.9 mg·L~(-1),均达到了国家城镇污水处理厂污染物排放一级A标准;高有毒负荷下,与传统的A~2O生物脱氮工艺相比,该组合工艺具有更加稳定和高效的脱氮效能;而且ANMBBR有效地提高了废水生物降解性(BOD_5/COD值增加至0.3),有利于短程硝化的高效运行,MBBR处理后出水有毒抑制物的数量和种类分别减少了84.4%和54.5%。因此,该组合工艺具有性能高效稳定和经济节约的技术优势,适于煤化工废水深度处理的工程化应用。  相似文献   

17.
以典型高浓度城市污水为处理对象,在生产性试验规模上,比较了不同回流比条件下倒置A2/O工艺与改良A2/O工艺在脱氮除磷效果上的不同,并研究了通过缩短初沉池水力停留时间缓解脱氮除磷碳源矛盾的可行性.试验结果表明,以较低污泥回流比运行的倒置A2/O工艺可以保持较好脱氮除磷效果,与相同污泥回流比而硝化液回流比为300%平行运行的改良A2/O工艺脱氮效果基本相当,但除磷效果优于改良A2/O工艺;提高倒置A2/O工艺污泥回流比至200%左右时,其脱氮除磷效果均优于改良A2/O工艺;通过缩短初沉池水力停留时间可以有效缓解生物脱氮除磷碳源的矛盾,提高系统整体脱氮除磷效果.  相似文献   

18.
煤化工废水生化处理出水仍含有大量有毒和难降解污染物,对环境具有严重的危害,采用缺/好氧移动床生物膜反应器(ANMBBR-MBBR)复合生物短程脱氮技术对煤化工废水进行深度处理。试验结果表明,生物组合工艺有效缓解了废水有毒抑制物和低碳氮比对生物脱氮工艺的负面作用,最佳运行条件为水力停留时间12 h,硝态氮/亚硝态氮混合液回流比200%,该工艺对COD、氨氮和总氮的去除率分别为68.1%、84.0%和74.7%,相应的出水浓度分别为48.0、4.8和13.9 mg·L-1,均达到了国家城镇污水处理厂污染物排放一级A标准;高有毒负荷下,与传统的A2O生物脱氮工艺相比,该组合工艺具有更加稳定和高效的脱氮效能;而且ANMBBR有效地提高了废水生物降解性(BOD5/COD值增加至0.3),有利于短程硝化的高效运行,MBBR处理后出水有毒抑制物的数量和种类分别减少了84.4%和54.5%。因此,该组合工艺具有性能高效稳定和经济节约的技术优势,适于煤化工废水深度处理的工程化应用。  相似文献   

19.
张亮  段昕宇 《辽宁化工》2023,(5):691-693+700
反硝化脱氮除磷技术与传统脱氮除磷方式相比,能够在缺氧段实现同步体脱氮除磷,具有节约碳源,减少能源消耗、污泥产量低等优点。简要概述了反硝化除磷的机理,总结并分析了碳源种类、碳源浓度、电子受体、温度、p H值、水力停留时间和污泥浓度等影响因素对反硝化脱氮除磷技术的影响。  相似文献   

20.
A/O工艺处理公厕废水脱氮运行参数的确定   总被引:1,自引:0,他引:1  
针对旅游区公厕污水高氨氮等特点,用正交试验选择改进A/O法生物脱氮工艺的关键影响因子,探讨关键因子与氨氮去除率的相关性及最佳工艺条件,试验表明碳氧化段水力停留时间为6h,硝化氧化段水力停留时间为6h,回流比为200%时公厕污水氨氮去除率达到90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号