首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用有限元软件ABAQUS对圆管绕弯成形过程进行数值模拟,研究了相对弯曲半径R/D、摩擦条件及弯曲角度对弯管壁厚变化的影响规律.研究结果表明:随着R/D值的增加,弯曲外侧最大壁厚减薄率和弯曲内侧最大壁厚增厚率都呈下降趋势;随着摩擦系数的增大,管弯曲外侧壁厚变薄率、弯曲内侧壁厚增厚率都迅速增大;弯曲角度越大,壁厚减薄率和增厚率也越大.实验验证表明,模拟结果与实验结果基本一致.  相似文献   

2.
夏东强  温彤 《模具工业》2008,34(2):30-33
管材剪切弯曲能够实现普通冷弯方法不能达到的超小半径弯曲,是一项较为可行的技术。针对管材剪切弯曲成形的受力与变形特点,应用塑性有限元方法研究了剪切弯曲主要工艺参数对成形后管材壁厚变化及截面椭圆度的影响,分析了变形区不同位置椭圆度及壁厚的减薄情况。研究表明:t/D越大,壁厚减薄及截面椭圆度越大;而随着R/D的增大,截面椭圆度有减小的趋势,但壁厚减薄不明显。  相似文献   

3.
《塑性工程学报》2020,(1):27-37
基于ABAQUS有限元分析软件,首先计算和分析了在变弹性模量和常弹性模量条件下的21-6-9高强不锈钢管绕弯成形过程,并将两种情况下的模拟结果与实验结果进行对比验证,发现采用变弹性模量可使截面畸变率和壁厚减薄率的预测精度分别提高31. 8%和11. 8%。然后在变弹性模量条件下研究了几何参数对管材绕弯成形截面畸变和壁厚减薄的影响。结果表明,当弯曲角不大于45°时,截面畸变率曲线和壁厚减薄率曲线均呈抛物线状;当弯曲角大于45°时,截面畸变率从弯曲平面到初始弯曲平面的分布呈先快速增加,后缓慢减小,再缓慢增加,最后急剧减小的特征;壁厚减薄率从弯曲平面到初始弯曲平面的分布呈先急剧增加,后趋于稳定,最后急剧减小的特征。截面畸变率和壁厚减薄率随相对弯曲半径的减小而增加,相对弯曲半径以不小于2. 0为宜;截面畸变率随管材壁厚的减小,直径的增加或直径和壁厚的等比例增加而增加;壁厚减薄率随管材壁厚的增加先增加后减小,随管材直径的增加或直径和壁厚的等比例增加而减小。  相似文献   

4.
基于ABAQUS/Explicit,建立了0Cr21Ni6Mn9N(21-6-9)不锈钢管材数控弯曲成形的三维弹塑性有限元模型,模拟分析了管模间隙对管材弯曲成形截面质量的影响规律。结果表明:壁厚减薄和截面畸变程度在中间部位严重,在弯曲平面和初始弯曲平面附近较小;随着芯棒与管材间隙的增大,壁厚减薄率减小,截面畸变程度先减小后增大;随着弯曲模与管材间隙的增大,壁厚减薄率和截面畸变程度增大;随着防皱块与管材间隙的增大,壁厚减薄率和截面畸变程度先减小后基本不变;压块与管材间隙对弯管截面质量的影响不显著。  相似文献   

5.
管材弯曲有限元仿真分析及试验研究   总被引:1,自引:1,他引:0  
利用有限元仿真分析方法对管材弯曲成形过程进行数值模拟,指出了弯曲过程中开裂、起皱、截面畸变等缺陷,分析了弯曲区域内管材壁厚变化规律.在此基础上进行工艺试验,并对试验后管材壁厚进行分析.试验结果与仿真分析结果吻合良好,两者均表明,弯曲过程中,弯角外侧管壁肇厚减薄,弯角内侧管壁壁厚增加,最大减薄和最大增厚均处于弯角中间部位.管材弯曲过程中,弯角外侧平均壁厚应变ε_t随着相对弯曲半径R/to的增大而减小;当R/to过小时,管壁外侧会过渡减薄,甚至破裂.  相似文献   

6.
薄壁管数控弯曲成形中的柔性芯模是影响薄壁管成形质量的关键因素。利用有限元分析软件Dynaform建立了高强度薄壁管数控弯曲过程的有限元模型,并对其可靠性进行实验验证。研究了芯棒与管材间隙、球芯棒个数、球芯棒与管材间隙、芯棒与管材摩擦条件等芯模参数对高强度薄壁管数控弯曲过程中壁厚变化和截面畸变的影响规律。结果表明:随着芯棒与管材间隙的增大,壁厚减薄率减小,截面畸变率增大不明显,芯棒与管材间隙主要影响管材弯曲结束位置;随着球芯棒个数的增加,壁厚减薄率增大,截面畸变程度减小;随着球芯棒与管材间隙的增大,壁厚减薄率减小,截面畸变率增大;芯棒与管材内壁的摩擦越小,越有利于降低壁厚减薄率。  相似文献   

7.
基于SYSWELD的运行管道在役焊接热循环数值模拟   总被引:7,自引:3,他引:4       下载免费PDF全文
陈玉华  王勇 《焊接学报》2007,28(1):85-88
采用焊接过程数值模拟软件SYSWELD建立模型,以水为运行介质,对X70管道在役焊接粗晶区的热循环进行了数值模拟,探讨了介质流速、管道壁厚和焊接热输入等因素对在役焊接热循环的影响规律,并对数值模拟结果进行了验证.结果表明,在役焊接粗晶区t8/5值随着水流速度的增大而减小,但减小的幅度不大;当流速小于0.5 m/s时,t8/3和t8/1随流速的增大而大幅减小,当流速大于0.5 m/s时,t8/3和t8/1随流速增大而缓慢减小.t8/5和t8/3均随着管道壁厚的增加而先增大后减小,在壁厚为8 mm时达到最大值;t8/1随着壁厚的增加而逐渐增大.随着焊接热输入的增加,t8/5,t8/3和t8/1均增大.焊接热循环计算结果和实测结果吻合较好,相对误差小于8%.  相似文献   

8.
基于代表性体积元的细观力学有限元的方法预测空心微珠增强铝基复合材料的弹性模量、弹塑性应力应变。研究了空心微珠体积百分比(Vf)和空心微珠壁厚与空心微珠半径的比值(t/R)对弹塑性性能的影响。研究表明复合材料有效弹性模量随着Vf的增大而减小,随着t/R的增大而增大;另外,随着Vf的增加复合材料逐渐表现出泡沫金属材料的特性。  相似文献   

9.
在方管无模弯曲实验的基础上,研究了弯曲成形诸因素对方管扁平化的影响。结果表明,在变形宽度一定的情况下,方管扁平化率随着弯曲半径的增加而减小;在弯曲半径一定的情况下,随着变形宽度的减小,方管扁平化率减小;方管壁厚变化,弯曲最内侧的壁厚最大,而其最外侧的壁厚最小。  相似文献   

10.
基于ABAQUS/Explicit平台,建立了TA18高强钛管数控弯曲成形过程三维有限元模型,并验证了模型的可靠性;采用该模型模拟分析了模具与管材之间的间隙对TA18高强钛管数控弯曲成形截面畸变和壁厚变化的影响规律。结果表明:减小芯棒/管材的间隙、弯曲模/管材的间隙和压块/管材的间隙可以降低截面畸变程度;减小弯曲模/管材的间隙、压块/管材的间隙或增加芯棒/管材的间隙可以减小壁厚减薄率;增大弯曲模/管材的间隙、芯棒/管材的间隙和压块/管材的间隙可以降低壁厚增厚率;防皱块/管材的间隙对截面畸变和壁厚变化影响不大。获得了较佳的芯棒/管材的间隙值、弯曲模/管材的间隙值、压块/管材的间隙值和防皱块/管材的间隙值,分别为0.075、0.1、0.1和0.1 mm。  相似文献   

11.
利用有限元模拟软件ABAQUS建立了0Cr21Ni6Mn9N不锈钢管材的数据弯曲、抽芯及回弹全过程有限元模型,并对其可靠性进行了验证;研究了芯棒伸出量e对横截面畸变、壁厚变化、起皱趋势和回弹角的影响规律。结果表明,随着芯棒伸出量的增大,管材横截面畸变率和回弹角减小,当芯棒伸出量大于2.5 mm时,管材出现"鹅头"现象;外侧壁厚减薄率随着芯棒伸出量的增大而增大,内侧壁厚增厚率随着芯棒伸出量的增大而有所减小,但减小趋势不明显;弯管内侧起皱趋势随着芯棒伸出量的增大先减小后增大;最后获得了合适的芯棒伸出量范围为1.5~2 mm。  相似文献   

12.
根据柴油机灰铸铁缸体内部不同壁厚,取了不同厚度的试样,测试了试样强度、硬度、石墨长度、珠光体含量等,研究了试样性能和壁厚变化、废钢加入量的关系。结果表明,在同一壁厚时,强度、硬度随着废钢加入量的增加而增大。在同样的废钢加入量下,强度、硬度随着壁厚尺寸的增大而减小,在壁厚大于100 mm时,强度、硬度衰减较慢;在壁厚小于100 mm时,强度、硬度衰减较快。随着壁厚变小或废钢加入量增加,珠光体形态、石墨形态、碳化物未发现明显变化,但是石墨长度减小、珠光体含量增加。在废钢加入量为80%时珠光体含量随着壁厚增加减小较慢。  相似文献   

13.
建立了Ti-2Al-2.5Zr(TA16)钛合金管材数控弯曲成形过程的有限元模型,并通过实验验证了该有限元模型的有效性。基于建立的模型研究了管模间隙在数控弯曲过程中对截面畸变率和管材壁厚变化的影响规律,并利用熵值法得到了最佳的管模间隙值。结果表明:减小管材/弯曲模间隙和管材/压块间隙以及增大管材/防皱块间隙可以降低外侧壁的减薄率,随着管材/芯轴间隙的增加,外侧壁的减薄率先减小后增大;增大管材/弯曲模间隙和减小管材/芯轴间隙可以降低内侧壁的增厚率;减小管材/弯曲模间隙和管材/芯轴间隙可以有效地降低截面畸变率;改变管材/压块间隙和管材/防皱块间隙对内侧壁增厚率和截面畸变率的影响不明显。通过熵值法获得了较佳的管材/弯曲模间隙为0.10 mm,管材/芯轴间隙为0.10 mm,管材/压块间隙为0.05 mm,管材/防皱块间隙为0.15 mm。  相似文献   

14.
利用Abaqus有限元软件对新型耐蚀Ti35合金管材的数控弯曲过程进行了模拟研究。研究了弯曲角度、芯棒伸出量、压块相对助推速度和相对弯曲半径对Ti35合金管材成形结果的影响。结果表明,Ti35合金管材数控弯曲截面扁化率和回弹角随弯曲角度的增大而增大;弯曲变形越剧烈(如减小弯曲半径、压块相对助推速度,或增大芯棒伸出量),壁厚减薄率越大,回弹角越小。截面扁化率随芯棒伸出量、相对弯曲半径的增大而减小。  相似文献   

15.
为判断高强钢矩形管绕弯成形参数对弯管质量的影响程度,建立了两种管坯厚度在5种径高比下弯曲不同角度的有限元模型,并对模型的可靠性进行实验验证。研究结果表明:当管件相对弯曲半径R/h0≥3.5时,矩形管壁厚越薄越容易在靠近夹块与镶块一端由于面高度缩减率和壁厚减薄率的变化而发生截面畸变。随着相对弯曲半径逐渐增大,截面畸变受管坯弯曲角度影响较大。同时讨论了相对弯曲半径为3时的弯曲极限角度,两种厚度下,根据弯曲角管件中面最大高度缩减率与最大壁厚减薄率关系得出极限弯曲角度在40°左右,因此在小半径弯曲时,选择合适的弯曲角度能避免造成管坯变形量过大。  相似文献   

16.
对金属管材在弯曲条件下的应力-应变关系进行分析,基于弹性-幂强化材料模型,在中性层附近的弹性变形区采用线性关系描述应力-应变关系,在塑性变形区采用幂函数形式描述应力-应变关系。根据回弹理论,计算时考虑了管材壁厚,推导了金属管材弯曲回弹角的近似计算公式。计算结果表明,弹性变形区产生的回弹量占整体回弹量的比值非常小。回弹角的大小与材料的自身参数相关,随着弹性模量E、材料硬化系数n的增大而减小,随着塑性系数K、管材壁厚t的增大而增大。回弹角的大小与弯曲时的弯曲角度和曲率半径相关,随着弯曲角度α、曲率半径ρ的增大而增大。  相似文献   

17.
内径偏差和壁厚偏差是评价筒形件旋压成形质量的重要指标。针对Hastelloy C276大径厚比薄壁筒形件,建立了三维弹塑性有限元模型,采用正交设计法安排试验,研究了减薄率、进给率、坯模间隙和芯模转数对反旋成形内径偏差和壁厚偏差的影响规律。研究表明:减薄率和进给率对成形质量影响显著,而坯模间隙和芯模转数影响相对较小。随着减薄率的增大,内径偏差和壁厚偏差增大;随着进给率的增大,内径偏差减小而壁厚偏差增大;随着坯模间隙的增大,内径偏差增大;随着芯模转速的增大,内径偏差先增大后减小。  相似文献   

18.
《塑性工程学报》2013,(6):25-30
为解决传统技术无法制造大径厚比、小弯曲半径铝合金薄壁弯管的难题,提出采用双层管充液弯曲新方法。运用数值模拟研究厚度比和内压对低碳钢/铝合金双层管充液弯曲过程中起皱行为和壁厚分布的影响。结果表明,随着厚度比的增加,起皱的现象得到缓解直至消除,内层弯管外侧减薄率逐渐减小,壁厚分布更为均匀;随着内压的增加,起皱现象逐渐延缓,内层管壁厚最大减薄率增加,因此增加厚度比和内压均有助于提高双层管弯曲成形的稳定性。通过实验成功研制出径厚比为63的铝合金薄壁弯管件,外侧最大减薄率为24%。  相似文献   

19.
内压对薄壁管充液压弯时的影响   总被引:2,自引:0,他引:2  
失稳起皱和截面畸变是薄壁管弯曲成形过程中的主要缺陷,通过数值模拟和实验的方法,研究了液压支承下管材的弯曲变形行为,进行了从无内压到内压为18MPa的管材充液弯曲成形,分析了充液弯曲成形过程中的内压值对成形的影响,给出了成形后的不圆度和典型点壁厚减薄率的变化规律,结果显示,随着充液压力的增加,管材的截面不圆度逐渐减小,管材内侧壁厚增厚趋势减小,外侧壁厚减薄趋势增大。并根据模拟结果给出了成形后的典型点的应力状态。  相似文献   

20.
管材弯曲中外侧壁厚变化的数值模拟   总被引:1,自引:1,他引:0  
回转牵引式弯曲成形是一种高质量、高效率的管材弯曲成形方式,能够有效地防止起皱、管壁的过分减薄和截面的椭圆化等成形缺陷.以圆形钢管为研究对象,采用有限元软件DEFORM-3D对弯曲成形过程进行数值模拟,找出管壁最大减薄处所在的位置,并获得滚珠与管壁的间隙、滚珠角速度及压力模速度对弯管外侧壁厚变化的影响规律.结果表明,随着滚珠与管壁间隙的增大,管壁受滚珠的影响变小,即壁厚变化较小;随着滚珠角速度的增大,壁厚变化先减小后增大,当滚珠角速度与弯曲模角速度大小相同时,壁厚变化最小;随着压力模速度的增大,壁厚变化渐渐变小,当压力模速度为64.28 mm·s-1时,壁厚变化最小.采用数值模拟后的优化参数在弯管机上进行试制,生产出合格件,模拟结果与实验结果基本吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号