首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO3-/CO3 2-or Ca 2+ /HCO3-) at 50℃ were reviewed.Conversion treatment for the Mg,Al-hydrotalcite conversion coating was as follows.Mg alloy was treated first in acidic HCO3-/CO3 2-aqueous for precursor layer formation on Mg alloy surface and then in alkaline HCO3-/CO3 2-aqueous to form a crystallized Mg,Al-hydrotalcite coating.Duration of an Mg,Al-hydrotalcite coating on Mg alloy surface was reduced from 12 h to 4 h by the conversion treatment.On the other hand,for reducing the formation time of CaCO3 coating on Mg alloy,the aqueous Ca 2+ /HCO3-with a saturated Ca 2+ content was employed for developing a CaCO3 coating on Mg alloy.A dense CaCO3 coating could yield on Mg alloy surface in 2 h.Corrosion rate(corrosion current density,Jcorr) of the Mg,Al-hydrotalcite-coated sample and CaCO3-coated AZ91D sample was 7-10μA/cm 2,roughly two orders less than the Jcorr of the as-diecast sample(about 200μA/cm 2) . No corrosion spot on the Mg,Al-hydrotalcite-coated sample and CaCO3-coated sample was observed after 72 h and 192 h salt spray test,respectively.  相似文献   

2.
The purpose of this work is to study the influences of Al and/or Ti addition on the microstructures, mechanical properties and corrosion properties of CoCrFeNi-(Al, Ti) high entropy alloy(HEA) coatings. Three coatings, AlCoCrFeNi(Ⅰ), CoCrFeNiTi_(0.5)(Ⅱ) and AlCoCrFeNiTi_(0.5)(Ⅲ), were fabricated by laser cladding successfully. The AlCoCrFeNi(Ⅰ) coating exhibited a simple body-centered cubic(BCC) solid-solution structure, whereas the CoCrFeNiTi_(0.5)(Ⅱ) alloy exhibited a face-centered cubic(FCC) solid-solution and a small amount of Laves phase. The BCC phases in AlCoCrFeNiTi _(0.5)(Ⅲ) coating were characterized as Fe–Cr rich disordered BCC phases(A2) and Al-Ni–Ti-rich ordered BCC phases(L2_1) separately. The AlCoCrFeNiTi_(0.5)(Ⅲ) coating with dual-phase BCC structure showed the optimal performance of both mechanical and corrosion properties, which was superior to BCC-based AlCoCrFeNi(Ⅰ) and FCC-based CoCrFeNiTi_(0.5)(Ⅱ) coatings. Nanoindentation tests and quantitative investigations on the strengthening mechanisms of AlCoCrFeNiTi_(0.5)(Ⅲ) coating were conducted, suggesting that the precipitation strengthening is the dominant strengthening mechanism. In short, the addition of moderate amount of Al and Ti in CoCrFeNi HEA shows potential for the development of a high strength and corrosion-resistant coating.  相似文献   

3.
Ti-Cu alloy has potential to be used in plastic surgery and dental implants due to its strong antibacterialproperties,high strength and good corrosion resistance.In this paper,Ti-5Cu was anodic-oxidized to enhance the surface compatibility.The influence of the oxidation on the corrosion resistance,antibacterial properties and biological properties was investigated.X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)results showed that a double-layer oxide coating with dense inner layer and porous outside layer was formed on Ti-Cu sample.The oxide coating consisted mainly of TiO2,CuzO and small amount of CuO,improved the corrosion resistance of Ti-Cu alloy by one order of magnitude due to the formation of the dense oxide inner layer,but high Cu ion release was detected.The plate count results showed that the antibac-terial activity of Ti-Cu sample was improved to≥99%due to the comprehensive function of CuO and Cu2O in the coating and Cu2+release.Cell test results showed that thecoating exhibited good cell compatibility,the porous sur-face structure improved the adhesion of cells,and Cu ion release promoted the cell proliferation.  相似文献   

4.
In this work, the corrosion behavior of the ascast and extrusion and aging treatment Mg–2Zn–0.2Mn alloy in simulated body fluid(SBF) were studied. The wear behavior of Mg–2Zn–0.2Mn alloy was investigated using pin-on-disk technique and stainless steel as counterbody under a constant sliding velocity at different loads ranging from 2 to 5 N with deionized water and SBF as lubrication.The results showed that the extrusion and aging treatment Mg–2Zn–0.2Mn alloy exhibited better corrosion resistance compared with the as-cast alloy due to finer average grain size, more homogeneous phase distribution, and decrease in porosity. The friction coefficient of fractional pair under SBF and deionized water lubrication were obviously lower than that of dry sliding condition. However, the wear rate of Mg–2Zn–0.2Mn alloy under SBF lubrication was higher than that of dry sliding and deionized water lubrication due to the corrosiveness of SBF accelerated the wear of the magnesium alloy. The magnesium alloy exhibited different wear mechanisms with the variety of loads and lubrication conditions.  相似文献   

5.
Titanium (Ti) and hydroxyapatite (HA) coatings have been prepared via air (APS) and vacuum plasma spraying (VPS), and then their composition, structure, bonding strength and bioactivity were examined. The results obtained reveal that in APS process many of Ti were oxidized, but in VPS the oxidization was avoided. VPS Ti coating possesses better bonding condition than APS Ti coating. As for HA coating, higher crystallinity has been obtained while the coating was deposited by VPS as compared with APS. The simulated body fluid (SBF) tests show that both of APS and VPS HA coatings possess good bioactivity. As compared with APS, VPS is recommended as a better method to deposit Ti and HA coatings that can be applied as hard tissue replacement implants.  相似文献   

6.
The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens before and after cycle oxidation were examined by XRD and SEM equipped with XEDS. The results showed that the coating is composed of a thin Al2O3 outer layer and a composite inner layer of Ti5Si3 with an appropriate amount of Al2O3 dispersed in. Cycle oxidation tests showed that the high temperature oxidation resistance of TiAl-based alloy was greatly improved by forming such composite coating. No spaliation and crack happened and the weight gain was very small after cycle oxidation at 900℃ for 314h.  相似文献   

7.
A novel calcium-phosphate(Ca–P)-coated magnesium(Mg) membrane used for guided bone regeneration(GBR) was studied.The microstructural characterization, electrochemical test, immersion test,fluorescence labeling analysis and histopathological evaluation were carried out.The results showed that Ca–P coating could obviously improve the corrosion resistance of the pure Mg membrane.The in vivo results showed that Mg membrane coated with Ca–P would take 8 weeks to be completely absorbed.However, Mg membrane was completely absorbed within 1 week.Histopathological evaluation showed that the Ca–P-coated Mg membranes were significantly better than Ti membranes at the early implantation time(4 weeks), and with the time prolonging,the performance of the coated Mg membrane was not as good as pure Ti membranes(but still better than blank group) at 8 and 12 weeks.The coated biodegradable Mg membrane had a good promising application in GBR.But further studies have to be done to further decrease the degradation rate of pure Mg membrane.  相似文献   

8.
A promising duplex coating was prepared by microarc oxidation(MAO) and enameling processes onto polished Ti6A14V alloy. The TiO_2 ceramic coating deposited by MAO was characterized and then combined with an enameling treatment in order to improve the tribological and corrosion resistance of Ti6A14V alloy. The morphology, phase composition, and hardness of MAO and MAO/enameling-coated Ti6A14V alloy were evaluated by scanning electron microscopy(SEM), X-ray diffraction(XRD), and Vickers microhardness tester, respectively.The tribological performance was investigated using a ballon-disk tribometer. The corrosion resistance was studied using immersion tests and potentiodynamic polarization.Wear tests show that the enamel coating on the MAOcoated surface causes a reduction in the friction coefficient.Immersion tests demonstrate that the duplex coating is more effective in improving the corrosion resistance of Ti6A14V than the MAO coating especially at high temperature(80 ℃). Potentiodynamic polarization curves reveal that the corrosion potential of the duplex coating increases by about 250 mV and the corrosion current density is slightly lower than that of the MAO coating. The duplex coating is superior to the stand-alone MAO coating in improving the tribological and corrosion behavior of Ti6A14V.  相似文献   

9.
Contamination resulting from microbial adhesion on magnesium alloys is very common in many applications. Self-assembly technology was employed to prepare an antibacterial composite coating by fixing silver nanoparticles (AgNPs) onto the surface of magnesium alloys. The AgNPs were immobilized on the surface of 3-aminopropyltrimethoxysilane (APTMS)-modified magnesium alloy AZ31 (APTMS/Mg) through electrosta- tic inter-attraction between partially protonated amino groups and negatively charged citrate-capped AgNPs, resulting in the AgNPs attached APTMS/Mg (AgNPs/APTMS/Mg) substrate. The prepared Ag colloid and functionalized AZ31 alloy were characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and electrochemical methods. Finally, the bactericidal activity of AgNPs/APTMS/Mg substrate against Escherichia coli was assessed by the inhibition zone. The results demonstrated that Si-O-Si covalent bonds existed on the substrate with the formation of inorganic Si-O-Mg bonds. AgNPs were immobilized and well-dispersed, forming a uniform submonolayer on the silane film in two dimensions. The AgNPs/APTMS-pretreated AZ31 alloys exhibited better corrosion resistance and excellent antibacterial performance.  相似文献   

10.
Ti–3Cu alloy has shown low melting point and strong antibacterial properties against S.aureus and E.coli and thus has potential application as dental materials and orthopedic application.In this paper, the corrosion properties of Ti–3Cu alloy in five kinds of simulated solutions were investigated in comparison with cp-Ti(commercially pure titanium) by electrochemical technology and immersion experiment.Electrochemical results have demonstrated that Ti–3Cu alloy exhibited much nobler corrosion potential, lower corrosion current density and high corrosion resistance than cp-Ti in all solutions, especially in saliva-pH6.8+0.2 F and saliva-pH3.5, indicating that Ti–3Cu alloy has much better anticorrosion properties than cpTi.Immersion results have shown that Ti ion and Cu ion were released from Ti–3Cu, especially in saliva-pH6.8+0.2 F and saliva-pH3.5 solutions.Both electrochemical data and immersion results have indicated that high corrosion rate and high metal ion release rate were detected in F ion-containing solution and low-pH solution, displaying that F~- and low pH had much strong aggressive attack to cp-Ti and Ti–3Cu alloy.The corroded surface morphology was observed by scanning electron microscopy(SEM), and the roughness was tested in the end.The good corrosion resistance of antibacterial Ti–3Cu alloy suggests its great potential as a long-term biomedical application.  相似文献   

11.
AlSi10Mg alloy was prepared by selected laser melting(SLM) in a high laser power range 300–400 W. The effects of energy density on the relative density, microstructure and mechanical properties of the SLMed AlSi10Mg alloy were studied. The results showed that the SLMed AlSi10Mg alloy fabricated at a laser power of 400 W and a scanning speed of 1800 mm/s had a relative density of 99.4%, a hardness of 147.8 HV, a tensile strength of 471.3 MPa, a yield strength of 307.1 MPa, and an elongation of 9....  相似文献   

12.
As-extruded Mg–Sr alloy, a kind of promising biodegradable biomedical material, was coated using micro-arc oxidation and also using a phosphate conversion coating. The corrosion behaviors were investigated using Hanks' solution. The corrosion of the as-extruded Mg–Sr alloy became more serious with increasing immersion time; that is, the corrosion pits became more numerous, larger and deeper. The micro-arc oxidation coating and the phosphate conversion coating were effective in improving the corrosion resistance of the as-extruded Mg–Sr alloy. The micro-arc oxidation coating was much more effective. Moreover, the as-extruded Mg–Sr alloy and the coated as-extruded Mg–Sr alloy exhibited lower corrosion rates than the as-cast Mg–Sr alloy and the corresponding coated as-cast Mg–Sr alloy, indicating that the corrosion properties of the coated samples are dependent on their substrates. The finer microstructure of the substrate of the as-extruded condition corroded much slower. The corrosion resistance of the coated Mg–Sr alloy depended on the coating itself and on the microstructure of the substrate.  相似文献   

13.
Ni-rich cathode material is one of the most promising materials for Li-ion batteries in electric vehicles.However, fading capacity, poor cyclic stability and high p H value are still major challenges, which suppress its practical application. In this study, spherical LiNi_(0.9)Co_(0.08)Al_(0.0)2O_2 powders with 0.4 wt% TiO_2 coating layer were prepared by impregnation–hydrolysis method. Scanning electron microscopy(SEM), high-resolution transmission electron microscopy(HRTEM) and X-ray diffraction(XRD) results show that TiO_2 is uniformly coated on the surface of LiNi_(0.9)Co_(0.08)Al_(0.0)2O_2 particle and slightly embedded into LiNi_(0.9)Co_(0.08)Al_(0.0)2O_2 particles.After 100 cycles at 2.0 C, 0.4 wt% TiO_2-coated LiNi_(0.9)Co_(0.08)Al_(0.0)2O_2 electrode delivers much higher discharge capacity retention(77.0%) than the pristine LiNi_(0.9)Co_(0.08)Al_(0.0)2O_2 electrode(63.3%). The excellent cycling performance of 0.4 wt% Ti O2-coated LiNi_(0.9)Co_(0.08)Al_(0.0)2O_2 electrode at a high discharge ratio is due to a TiO_2 coating layer which can effectively reduce the direct contact between cathode material and electrolyte, suppress the oxidation of electrolyte, improve electrical conductivity of the electrode and increase the stability of the structure.  相似文献   

14.
In this work,a process of cold rolling with 70%thickness reduction and different annealing temperatures was selected to regulate the microstructure of Ti-3wt%Cu alloy.Microstructural evolution,mechanical properties and antibacterial properties of the Ti-3wt%Cu alloy under different conditions were systematically investigated in terms of X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscope(TEM),tensile and antibacterial test.The results indicated that cold rolling could dramatically increase the ultimate tensile stress(UTS)from 520 to 928 MPa,but reduce the fracture strain from 15.3%to 3.8%.With the annealing temperature increasing from 400 to 800C for 1 h,the UTS decreased from 744 to 506 MPa and the fracture strain increased from12.7%to 24.4%.Moreover,the antibacterial properties of the Ti-3wt%Cu alloy under different conditions showed excellent antibacterial rate(>96.69%).The results also indicated that the excellent combination of strength and ductility of the Ti-3wt%Cu alloy with cold rolling and following annealing could be achieved in a trade-off by tuning the size and distribution of Ti2Cu phase,which could increase the applicability of the alloy in clinical practice.More importantly,the antibacterial properties maintained a good stability for the Ti-3wt%Cu alloy under different conditions.The excellent combination of mechanical properties and antibacterial properties could make the Ti-3wt%Cu alloy a good candidate for long-term orthopaedic implant application.  相似文献   

15.
Type Ⅰ hot corrosion behavior of SiO_2-Al_2O_3-glass composite coating based on Ti-47 Al-2 Cr-2 Nb substrate was investigated in the mixture salt of 25 wt%NaCl + 75 wt%Na_2SO_4 at 850 °C. The results showed that there was a bidirectional ion exchange between composite coating and the film of mixed salts, and the sodium ion in the molten salts penetrated into the glass matrix of composite coating, while the potassium ion in the glass matrix dissolved into the molten salts. A decrease in hot corrosion rate was achieved for the coated alloy in comparison with the bared substrate due to the composite coating acting as a diffusion barrier to sulfur and chlorine and preventing the molten salts from diffusing to the coating/alloy interface during the hot corrosion exposure. Additionally, the composite coating decreased the oxygen partial pressure at the coating/alloy interface and promoted the selective oxidation of Al to form a protective Al_2O_3 layer.  相似文献   

16.
Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrometer(EDX)and X-ray diffractometer(XRD).Fretting wear behaviors of the coating and its substrate were comparatively tested without lubrication under varied displacement amplitudes(D)in a range of 3-40μm,constant normal load(Fn)of 300 N and frequency of 5 Hz.The results showed that the MAO coating,presenting rough and porous surface and high hardness,mainly consisted of rutile and anatase TiO2 phases.Compared with the substrate,the MAO coating could shift the mixed fretting regime(MFR)and slip regime(SR)to a direction of smaller displacement amplitude.In the partial slip regime(PSR),lower friction coefficients and slight damage appeared due to the coordination of elastic deformation of contact zones.In the MFR,the friction coefficient of the coating was lower than that of the substrate as a result of the prevention of plastic deformation by the hard ceramic surface.With the increase of the displacement amplitude,the degradation of the MAO coating and the substrate increased extremely.The fretting wear mechanisms of the coating were abrasive wear and delamination with some material transfer of specimen.In addition,the coating presented a better property for alleviating fretting wear.  相似文献   

17.
Preparation and characterization of Ca-P coating on AZ31 magnesium alloy   总被引:1,自引:0,他引:1  
A Ca-P coating consisting of biodegradableβ-tricalcium phosphate[β-TCP,β-Ca3(PO4)2]accepted for medical application was coated on a biodegradable AZ31 alloy by chemical deposition to improve the corrosion resistance.The good bonding strength of the coating is obtained.The results show that the corrosion potential of the Ca-P coated AZ31 alloy increases significantly,and MG63 cells show good adherence,proliferation and differentiation on the surface of the coated alloy.The Ca-P coating might be an effective way to improve the surface bioactivity of magnesium alloys.  相似文献   

18.
Micro-arc oxidation coatings on Mg-Li alloys   总被引:1,自引:0,他引:1  
Micro-arc oxidation (MAO) method was used for the surface modification of an Mg-5wt.%Li alloy. Ceramic coatings were in-situ fabricated on the Mg-Li alloy. The morphology feature,phase composition,and corrosion-resistance of the formed ceramic coatings were studied by SEM,XRD,and electrochemical methods,respectively. The results showed that the coatings produced in a sodium silicate solution system were composed of MgO and Mg2SiO4. The ceramic coating became thicker and the content of Mg2SiO4 phase increase...  相似文献   

19.
Cracks may easily occur in the fusion weld between vanadium alloys and stainless steel due to the brittle intermetallics and welding stress.The high vacuum electron beam braze-welding has been successfully used to join vanadium alloy(V-5Cr-5Ti) to stainless steel(HR-2) with electroplated Cu and Ag coating.To investigate the effects of electroplated coating on the weldability,the joint appearance,the microstructure and the mechanical properties of the joints have been thoroughly analyzed.The results show that the joint surface configuration was good and root reinforcement was full and smooth.A reaction zone(RZ) was gained on the interface between the VSCrSTi alloy and HR-2 stainless steel base metals.The width of reaction zone at the top of the joint was up to 0.65 mm,wider than that in the bottom of the joint(0.46 mm).The reaction zone consisted of considerably smaller dendritic structures with an average grain size of less than 10 μm.Element Ag and Cu almost enriched the interface between V-5Cr-5Ti alloy substrate and RZ,serving as a physical barrier which decreases or avoids the formation of intermetallics.The maximum tensile strength of vanadium alloy/stainless steel dissimilar alloy joint was more than 300 MPa.The joint was defects free.  相似文献   

20.
In this work, a novel duplex Ni-P/Ni-Mo-P coating upon the aluminum(Al) substrate was synthesized via an electroless plating, i.e., the binary Ni-P coating as a transition layer and the ternary Ni-Mo-P coating on the top. It was found that the duplex coating was of a high hardness,large elastic modulus,low porosity and excellent corrosion resistance. In addition, experimental results revealed that for a total 20 μm coating thickness, the duplex coating with a 7 μm of the Ni-Mo-P coating exhibited the best corrosion resistance in 0.5 mol/L sulfuric acid solution, which was attributed to its compact structure and low porosity. This duplex Ni-P/Ni-Mo-P coating with a thin ternary Ni-Mo-P layer is expected to solve the problem of low deposition rate of ternary alloy coating and thereby may expand applications of Al and its alloys in the fields of machine manufacture and corrosion environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号