首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
在Gleeble-1500热模拟机上对Ti-5Al-5Mo-5V-1Cr-1Fe合金进行高温热压缩实验,研究该合金在变形温度为750~900℃、应变速率为0.001~1 s 1条件下的流变应力行为。利用光学显微镜分析合金在不同变形条件下的组织演化规律。结果表明:合金的流变应力随着应变速率的增大和变形温度的降低而增大;流变应力随着应变的增加而增大,出现峰值后逐渐趋于平稳;变形过程中的流变应力可用Arrhenius双曲正弦本构关系来描述,平均变形激活能为454.2 kJ/mol;各种变形条件均可细化原始晶粒尺寸。随着温度的升高和应变速率的降低,合金的主要软化机制由动态回复逐渐变为动态再结晶;在(α+β)相区变形(750~850℃)时,α相对β晶粒的动态再结晶的发生起到阻碍作用。  相似文献   

2.
丁蓉蓉  周杰  李鑫  张建生  卢顺 《锻压技术》2019,44(3):133-139
通过Gleeble-3500热模拟试验机对温度范围为750~950℃、应变速率范围为0. 01~10 s~(-1)的多组Ti-5Al-5Mo-5V-1Cr-1Fe合金试样进行热压缩试验,利用得到的真应力-真应变曲线求解材料参数,建立了基于Arrhenius模型的本构方程,通过将所求本构方程计算出的流变应力与实测应力-应变曲线进行对比,验证了该方程的准确性;进而基于动态材料模型的加工图理论,分别绘制出应变为0. 1,0. 3,0. 5和0. 7时Ti-5Al-5Mo-5V-1Cr-1Fe钛合金的热加工图。结果显示:随着应变的增大,流变失稳区向中低温高应变速率区集中;在较小的应变量(0. 1~0. 3)时,安全区主要集中在中温低应变速率区(840~900℃,0. 4 s~(-1))和高温高应变速率区(910~950℃, 1 s~(-1));在较大应变量(0. 3~0. 7)时,安全区主要集中在低应变速率区(780~950℃,0. 3 s~(-1))和高温高应变速率区(910~950℃, 1 s~(-1))。因此,Ti-5Al-5Mo-5V-1Cr-1Fe钛合金高温变形时的安全热加工区域为:中温(840~900℃)低应变速率(0. 01~0. 3 s~(-1))区。  相似文献   

3.
初始组织对Ti-6Al-4V合金高温变形机制影响研究   总被引:1,自引:0,他引:1  
研究了两种不同初始组织(魏氏组织、马氏体组织)Ti-6Al-4V合金在温度区间为700~750℃,应变速率为10~(-3)~1s~(-1)之间的高温变形行为。结果表明:初始组织对Ti-6Al-4V合金高温变形行为有着重要影响,初始魏氏组织Ti-6Al-4V合金主要发生了绝热剪切变形,在试样内部形成了绝热剪切带,绝热剪切带的密度随着温度上升和应变速率下降而减小;α′马氏体组织Ti-6Al-4V合金主要发生了稳态变形,在试样内形成了晶粒尺寸在亚微米级甚至纳米级的超细晶组织,晶粒尺寸和组织均匀性随着温度升高和应变速率减小而增大。α′马氏体组织的晶粒细化机制主要是连续动态再结晶,α′/α+β相变过程为再结晶的发生提供了重要的驱动力。  相似文献   

4.
研究应变速率和变形温度对具有初始片状α相的47Zr-45Ti-5Al-3V合金在热变形过程α→β相转变的影响。结果表明,当变形温度为550°C时,α相的体积分数随应变速率的增加而降低;而当变形温度为600和650°C时,随应变速率从1×10~(-3) s~(-1)增大到1×10~(-2) s~(-1),α相的体积分数先增加到一个最大值,随后随应变速率的增加而逐渐下降;当变形温度为700°C时,整个变形过程中合金组织由单一β相组成。在一个给定的应变速率条件下,α相的体积分数随着变形温度的增加而降低。随着应变速率的降低和变形温度的增加,球状α相的体积分数和尺寸逐渐增加。当变形温度达到650°C和应变速率降低到1×10~(-3) s~(-1)时,片状α相完全转变为球状α相。α相的体积分数及形貌随应变速率和变形温度的变化显著影响合金的硬度。  相似文献   

5.
通过热压缩模拟试验机Gleeble3500进行了Ti-5Al-5Mo-5V-3Cr-1Zr(Ti-55531)合金在β相区的热模拟压缩试验(变形温度为860、885、910、935℃,应变速率为0.001、0.01、0.1、1 s~(-1)),采用光学显微镜分析了材料的组织演化行为。结果发现,Ti-55531合金变形过程中的动态软化效应以动态回复为主,在低应变速率下,组织呈现再结晶特征。为了通过材料变形机制去描述流动应力行为,考虑加工硬化和动态软化机制对位错密度的影响,建立了Ti-55531合金在β相区的位错密度内变量本构模型。结果表明,该模型能够准确预测Ti-55531合金在β相区的热变形行为。  相似文献   

6.
研究Ti-5Al-5Mo-5V-1Cr-1Fe合金在β→α+β相变点以下热缩变形时的动态相变过程。发现在相变点以下0~100 K压缩时会促进应变诱导的α→β相变的发生。压缩过程中的形变储存能为相变提供驱动力。变形过程中位错和亚晶等缺陷增加,促进溶质元素的扩散,溶质元素的重新分布引起两相自由能的重新分布,促进α→β的转变。在{100}取向和{111}取向晶粒中还发现存在取向依赖特征,{111}取向晶粒中不充分的回复为相变提供更大的驱动力。另外,还研究了变形量和应变速率对相变的影响。  相似文献   

7.
采用Gleeble 3500热模拟实验机和D/MAX-2500/PC型X射线衍射仪研究了热变形参数对47Zr-45Ti-5Al-3V合金β→α相转变的影响。结果表明,在850℃固溶处理后,该合金发生完全再结晶,再结晶晶粒尺寸为224μm,合金的组织由单一β相组成。在α+β两相区热变形过程中,该合金将发生β→α相的转变,其相变行为依赖于应变速率和变形温度。在低应变速率变形时,该合金发生了β→α相的转变;而在高应变速率变形时,该合金发生α→β相转变。在低温高应变速率变形时,该合金中析出的α相为针状。随变形温度的升高和应变速率的降低,针状α相发生球化,而且球状α相的体积分数逐渐增加。当变形温度为600℃和应变速率为10~(-3)s~(-1)时,针状α相完全球化。  相似文献   

8.
Ti-46Al-2Cr-4Nb-Y合金的高温变形及加工图   总被引:1,自引:0,他引:1  
采用Gleeble-1500 热压缩模拟试验机进行压缩实验,在变形温度为1 100~1 250 ℃、应变速率为10-2~ 1 s-1的范围内,研究Ti-46Al-2Cr-4Nb-Y合金的高温变形行为,并基于动态材料模型,建立Ti-46Al-2Cr-4Nb-Y合金的加工图.结果表明:Ti-46Al-2Cr-4Nb-Y合金的高温变形流变应力对温度及应变速率敏感;流变应力随应变速率的增大而增大,随温度的升高而减小;动态再结晶是导致流变软化及稳态流变的主要原因;Ti-46Al-2Cr-4Nb-Y合金的安全热加工区域为温度1 200~1 230 ℃,应变速率10-2~10-1 s-1.  相似文献   

9.
对Ti-25V-15Cr-0.2Si阻燃钛合金在温度为950~1100℃,应变速率为0.001~1 s~(-1)条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s~(-1),变形温度为950~1050℃时,动态再结晶使晶粒细化;当变形温度高于1100℃,应变速率低于0.001 s~(-1)时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。  相似文献   

10.
为了探究V和B元素复合添加对β型γ-TiAl合金的显微组织和变形机制产生的影响,本工作针对Ti-44Al-5Nb-1Mo合金和Ti-44Al-5Nb-1Mo-2V-0.2B合金,进行了不同温度和应变速率条件下的高温热压缩实验,利用SEM-BSE和TEM对组织进行表征,对比分析了其变形后的显微组织,研究了添加V和B对Ti-44Al-5Nb-1Mo合金的显微组织及热变形机制的影响。结果表明,2种Ti Al合金的显微组织差异较大,添加V和B可以显著改变TiAl合金对热变形的敏感性。Ti-44Al-5Nb-1Mo-2V-0.2B合金高温变形能力明显优于Ti-44Al-5Nb-1Mo合金。Ti-44Al-5Nb-1Mo合金的高温热变形以难变形片层团的偏转、变形带的产生为主,温度为1250℃时,其变形组织表现出较高的温度和应变速率敏感性,极易形成尺寸不均匀的近片层组织;对于Ti-44Al-5Nb-1Mo-2V-0.2B合金而言,升高变形温度或降低应变速率,既可以促进片层团内部的变形诱导L(α/γ)→α+γ+β/B2和γ→α相变,又可以促进α和β/B2相的球化/动态再结晶,从而大幅提高该合金的组织均...  相似文献   

11.
采用Gleeble-3500热模拟试验机研究了Ti-22Al-24Nb合金在温度为900~1 110℃和应变速率为0.01~10s~(-1)条件下的高温流动应力及微观组织,分析了应变速率和变形温度对高温流动应力及热变形组织的影响。结果表明,变形温度和应变速率对Ti-22Al-24Nb合金的流动应力随变形温度的升高而降低,随应变速率的增加而升高。在α_2+B_2两相区,高应变速率下(6)ε≥1.0s~(-1))进行变形时,合金显微组织发生局部塑性流动和绝热剪切。在B_2单相区,低应变速率(6)ε≤0.1s~(-1))进行变形时,有明显的动态再结晶晶粒产生。高应变速率下,原始B_2相晶粒被明显拉长,晶界多呈不连续状态;低应变速率下变形时,随变形温度升高,合金易发生动态再结晶,当变形温度高于990℃时出现明显的动态再结晶特征;高应变速率下变形时,晶界模糊,随变形温度降低,晶界几乎全部消失,合金易发生局部塑性流动和绝热剪切。  相似文献   

12.
通过等温热压缩实验研究Ti-6.5Al-2Zr-1Mo-1V合金在温度750~950°C、应变速率0.001~10 s~(-1)条件下的动态等轴化动力学行为。结果表明,层片组织α相的等轴化分数随变形温度升高和应变速率降低而增大,并构建了JMAK型等轴化动力学方程,且方程预测的等轴化动力学曲线与实验值吻合较好。此外,结合SEM和TEM微观组织观察发现,层片组织α相的动态等轴化过程分为两个阶段,首先是由动态再结晶和机械孪晶两个互相竞争的机制引起的晶界分离阶段;第二阶段中β相渗入α/α界面导致等轴化完成,β相渗入α/α界面实质上是由Al、Mo和V等合金元素的扩散造成的。  相似文献   

13.
本文以Ti-6Al-7Nb合金为研究对象,采用Gleeble-3500热模拟压缩试验机进行不同温度和应变速率压缩试验。分析了Ti-6Al-7Nb合金在变形温度1023 K、1073 K、1123 K、1173 K,应变速率为0.005 s-1、0.05 s-1、0.5 s-1、5 s-1和10 s-1,最大变形量为60%下的高温变形行为及热加工特性。结果表明:变形温度与应变速率对Ti-6Al-7Nb合金的流动应力影响较大,其中应变速率是影响加工硬化过程的主要因素。Ti-6Al-7Nb合金在发生热塑性变形时后的物相主要有:初生α相、片层状α相、次生α相、片层状β相以及发生球化的初生α相等。Arrhenius本构方程模型适用于低温低应变速率和高温高应变速率形变条件的Ti-6Al-7Nb合金高温变形。利用MATLAB构建计算确定了合金最佳塑性变形区间为:应变速率0.0067 s-1-0.1353 s-1和温度1100-1173 K,在该区间有可能获取Ti-6Al-7Nb合金最佳的塑性变形工艺参数。  相似文献   

14.
采用Gleeble-1500热模拟试验机进行等温压缩实验,在变形温度为1000-1150°C、应变速率为0.001-1s-1的条件下,研究粉末冶金Ti-47Al-2Cr-0.2Mo合金的流变行为。结果表明:变形温度和应变速率对该合金的流变行为有显著影响,流变应力随应变速率的增加和变形温度的降低而增大。不同应变条件下的加工图表明该合金的加工图对应变量很敏感。应变量为0.5时,对应的加工图表明粉末冶金Ti-47Al-2Cr-0.2Mo合金合适的加工区域是:温度1000-1050°C、应变速率0.001-0.05s-1;温度1050-1125°C、应变速率0.01-0.1s-1。对热变形后合金的显微组织和加工图进行分析,发现1000°C,0.001s-1是该合金进行热变形的最佳工艺参数。  相似文献   

15.
通过热压缩实验研究Ti-6Al-2Zr-1Mo-1V钛合金在变形温度为1000~1100°C,应变速率为10-3~1.0s-1的条件下的动态再结晶行为。结果表明:在变形温度高于1050°C、应变速率低于0.01s-1时,合金的动态再结晶机制以不连续动态再结晶为主;在变形温度低于1050°C、应变速率高于0.01s-1时,合金的动态再结晶机制以连续动态再结晶为主,同时存在少量的不连续动态再结晶。此外,降低应变速率和升高变形温度均能促进动态再结晶进程并使β变形晶粒细化。  相似文献   

16.
TiAl基合金的高温塑性变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机在变形温度为1 000~1 150 ℃、应变速率为10~(-3)~10~0 s~(-1)的变形条件下,研究Ti-47Al-2Cr-0.2Mo(摩尔分数,%)合金的热变形行为.利用光学显微镜和扫描电子显微镜分析合金在不同变形条件下的组织演化规律.结果表明:流变应力随着应变速率提高和变形温度降低而增大;在变形过程中,流变应力随着变形量增大而增大,当流变应力达到峰值后趋于平稳,表明合金在变形过程中发生了动态再结晶;热变形过程的流变应力可采用双曲正弦本构关系来描述,平均激活能为337.75 kJ/mol;从合金的组织演化过程中可以看出,合金中不均匀的原始组织得到明显均匀化,变形后的组织是由α_2/γ层片晶团和γ晶粒组成的双态组织,在α_2/γ层片晶团和γ晶粒的晶界交界处发现分布均匀的B_2相,并且随着变形温度升高B_2相数量逐渐减少.  相似文献   

17.
运用Gleeble-1500D型动态热模拟试验机对Ti-47Al-2Nb-2Cr(摩尔分数,%)合金在温度为950~1150℃、应变速率为0.001~1 s~(-1)进行热模拟压缩试验,通过对变形开裂后试样断口裂纹形貌的分析,阐明TiAl合金高温变形过程的开裂损伤机理。结果表明:在低温(1000℃)、高应变速率(0.1 s~(-1))条件下,TiAl合金高温变形开裂方式为沿45°剪切开裂,随着变形温度的升高和应变速率的降低,材料发生纵向自由表面开裂。采用二分法确定TiAl合金不同温度和应变速率下的临界变形量,引入考虑温度和应变速度参量的Zener-Hollomon因子,构建TiAl合金高温变形过程临界损伤模型。  相似文献   

18.
通过对低成本Ti-6Al-2.5V-1.5Fe-0.15O合金热模拟压缩试验,得到了合金在不同高温变形条件下的真应力-应变曲线。结果表明,在β单相区应力-应变曲线呈现动态回复特征,在α+β两相区呈现典型动态再结晶曲线特征。变形组织由α相以及少量的β相构成,层片α相发生球化,随着变形温度升高,球化率降低,再结晶晶粒长大。在低应变速率变形时,流变应力软化机制以α相动态球化为主,高应变速率变形时除了球化外,片状α相周围有细小的再结晶晶粒形成。  相似文献   

19.
Ti-6Al-4V合金超塑性变形时的组织演化   总被引:1,自引:0,他引:1  
利用光学显微镜和扫描电镜对超塑性拉伸后的细晶Ti-6Al-4V合金分别进行了断口形貌分析和组织演化规律研究。结果表明:细晶Ti-6Al-4V合金室温拉伸时,断裂方式为准解理断裂;超塑性拉伸时,试样断裂的主要形式是韧窝-空洞聚集型断裂。在初始应变速率不变的条件下,随着拉伸温度的升高,α相晶粒尺寸增大,β相数量增多,空洞数量减少,且在840℃至930℃拉伸时,α相晶粒仍保持等轴状态,但在较高温度(960℃)拉伸时,α相晶粒被拉长,部分区域出现网篮组织。在拉伸温度不变时,随着初始应变速率的降低,α相晶粒尺寸增大,β相增多,空洞数量减少。高温(960℃以上)拉伸时,β相颗粒具有良好的塑性和较低的硬度,丰富的β相有利于晶界协调滑动,并对空洞的产生具有抑制作用。  相似文献   

20.
基于挤压态FGH4096合金双圆锥台试样热压缩变形及过固溶热处理试验,结合DEFORM有限元软件数值模拟,确定试样中各等效应变范围内临界晶粒长大分布规律,研究热加工工艺对挤压态FGH4096合金临界晶粒长大的影响。结果表明:在温度980~1060℃、应变速率0.003~0.03 s~(-1)条件下,双圆锥台试样热变形后再经过固溶热处理,合金临界晶粒长大的窗口条件从低温低应变速率向高温高应变速率转变,其中(980℃、0.03s~(-1))、(1060℃、0.003s~(-1))条件下可以避免出现临界晶粒长大,并获得均匀晶粒组织。当变形温度为980℃时,随着应变速率的增加,异常晶粒长大程度减小,且合金临界晶粒长大位置的临界等效应变数值降低;当应变速率为0.03s~(-1)时,随着变形温度的升高,异常晶粒长大程度增大,且试样发生临界晶粒长大的等效应变区域扩大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号