首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以W粉、Co粉和碳黑为原料,通过球磨、压制成形及微波反应烧结制备WC-6Co硬质合金。采用XRD、SEM、密度计和维氏硬度计等研究微波反应烧结温度、升温速率、保温时间和W粉粒度4个因素对硬质合金组织与性能的影响。结果表明:选用粒度为1.3μm的W粉为原料,当温度大于1100℃时,W即可被C完全碳化生成WC;当温度为1300℃时合金致密性较好,维氏硬度(HV_(30))与断裂韧性(W_k)分别为1999N/mm~2和8.51MPa/m~(1/2),继续提高温度至1400℃时合金性能无明显变化。烧结温度越低、升温速率越大、保温时间越短,合金残留孔隙越多,导致维氏硬度与断裂韧性性能下降。当微波反应烧结温度为1300℃、升温速率100℃/min和保温时间10 min时制备的WC-6Co硬质合金微观组织均匀和综合性能最佳。选用粒度为27.0μm的W粉为原料按照最佳工艺烧结制备出WC-6Co硬质合金,并与平均粒度1.3μm的W粉制备的合金进行对比发现粗W粉颗粒制备的合金中存在W_2C,微波反应烧结工艺参数与W粉平均粒度相关。  相似文献   

2.
采用经球磨扁平化处理的W粉末为原料,添加适量Co、C(碳黑)、成型剂及纳米W粉制备板状晶硬质合金,研究了烧结温度、时间和添加纳米W粉,对板状晶硬质合金显微组织结构和性能的影响。结果表明,球磨预处理中颗粒W粉末可获得扁平化程度高的薄片状W粉末,以其为原料制备的WC-12%Co(质量分数)板状晶合金相对密度达97%,合金硬度呈现出明显的各向异性;添加纳米W粉或提高烧结温度、延长烧结时间,均有利于压坯烧结收缩致密化,生成更多的板状WC晶粒。  相似文献   

3.
采用机械活化法制粉,制备了活化元素Co含量不同的Mo-Cu合金.通过对密度、硬度、电导率、热导率、热膨胀系数的测试及组织的观察,研究了Co元素对Mo-Cu合金致密化工艺及其组织性能的影响.结果表明,Co与Mo形成了中间相Co7Mo6,这有利于烧结致密化温度的降低,当1 250℃烧结1 h后合金相对密度达97.71%;随着Co含量的添加,Mo-Cu合金的硬度值增加,电导率、热导率下降较为明显,而热膨胀系数变化幅度不大,与Al2O3陶瓷基片热膨胀系数比较接近;其显微组织呈细小均匀的网络结构.  相似文献   

4.
《铸造技术》2017,(7):1670-1673
采用粉末冶金法制备了WC-14TiC-8Co超细硬质合金,研究了不同的烧结温度对WC-14TiC-8Co超细硬质合金组织和性能的影响。结果表明,随着烧结温度从1300℃升高到1410℃,合金的晶粒逐渐长大,合金的密度、抗弯强度随温度上升呈现出持续升高的走势,而硬度表现出先升后降的走势;当烧结温度为1380℃、保温时间为40min时,WC-14TiC-8Co超细硬质合金获得了最佳综合性能,其密度、抗弯强度和硬度值分别达到11.49g·cm~(-3)、1482MPa和92.8HRA,合金的组织为WC+(Ti,W)C+γ+少量η相,升温过程中的缺碳现象是η相形成的主要原因。  相似文献   

5.
以超细WC粉末和超细WC-6Co复合粉末为原料,添加VC/Cr3C2作为晶粒长大抑制剂,同时进行配碳,采用高能球磨和气压强化烧结制备晶粒度小于0.5μm的WC-0.5Co超细硬质合金,研究了不同VC/Cr3C2添加量及配碳量对其组织与性能的影响。结果表明:VC/Cr3C2有效抑制了烧结过程中WC晶粒的长大,显著提高了WC-0.5Co超细硬质合金的硬度。当VC/Cr3C2添加量为0.73%(质量分数,下同)时,合金的硬度(HV0.05)最高,达到32 658 MPa;同时一定的配碳量有利于控制合金中的脱碳,提高合金性能,当配碳量为0.2%时,WC-0.5Co-0.73VC/Cr3C2合金的综合力学性能最好,断裂韧性为6.935 MPa·m1/2,维氏硬度(HV0.05)为32 216 MPa。  相似文献   

6.
以液相复合-连续还原碳化方法制备的纳米复合WC-6Co粉末为原料,采用放电等离子烧结(SPS),制取了超细硬质合金。利用扫描电镜、维氏硬度仪、洛氏硬度仪、密度测试仪、MTS陶瓷测试系统等,观察烧结体显微结构,测试其硬度、密度、断裂强度、矫顽磁力、磁饱和度。结果表明采用放电等离子烧结获得的烧结体的硬度HVl≥19500MPa,断裂强度TRS≥2800MPa,平均晶粒度150nm~300nm。制备了高强度、高硬度的超细WC-6Co硬质合金。  相似文献   

7.
《硬质合金》2017,(6):393-397
本文采用雾化干燥,氢还原碳化法,真空烧结等工艺制备WC-6%Ni细晶硬质合金,主要讨论了不同的烧结温度和保温时间对WC-6%Ni细晶硬质合金致密化,显微组织及性能的影响。采用扫面电镜(SEM),XRD,维氏硬度计等分析设备对样品进行检验。结果表明:随着烧结温度的提高,该样品的密度和硬度显著提高,当真空烧结温度1 420℃,保温1 h,WC-6%Ni硬质合金的密度为14.764 g/cm~3,硬度1 609 HV。在烧结温度1 420℃条件下,改变保温时间。保温时间过短,溶解和析出进行的不充分,导致少部分孔洞没有被液相完全填充,保温时间过长会导致粘结相Ni、元素C等损失,形成大量孔洞和Ni池等缺陷。  相似文献   

8.
采用亚微米WC粉和纳米Co粉以及亚微米WC粉和微米Co粉的混合粉末作为原料,利用放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金.对比研究表明,以两种混合粉末为原料均获得了平均晶粒尺寸约为200 nm的超细硬质合金材料.其中,采用微米Co粉制备的材料的相对密度达到98.0%以上,硬度HRA达到94.5,断裂韧性达到13.50 MPa·m1/2,具有优良的综合性能;而采用纳米Co粉制备的硬质合金的组织均匀性和性能较差.根据SPS技术的烧结机理,对混合粉末的致密化机制进行了分析.  相似文献   

9.
采用平均粒度为1.03 μm的超细钼粉和La2O3颗粒的混合粉末作为原材料,应用SPS粉末冶金法制备出粒度为3.74 μm、致密度为98.71%的力学性能优异的钼合金烧结坯.探究了SPS制备超细晶高强度高硬度钼合金烧结坯的最佳烧结温度、保温时间以及温度制度对烧结坯致密度、晶粒大小、显微硬度的影响,并进一步对比了SPS烧...  相似文献   

10.
采用SPS烧结技术制备WC-6Co-xCr_3C_2(x=0~0.6%,质量分数)硬质合金,并通过SEM、EDS、力学性能测试仪、摩擦磨损试验机和电化学工作站等测试手段研究Cr_3C_2含量对SPS烧结WC-6Co硬质合金显微组织和性能的影响。结果表明:随着Cr_3C_2添加量的增大,合金的晶粒异常长大现象消失,晶粒变得细小均匀;同时发现Cr_3C_2的添加可以明显改善合金的力学性能、摩擦磨损性能和耐腐蚀性能。当其添加量为0.45%时,合金综合性能最优,硬度为1933 HV30,断裂韧性达到12.5 MPa·m1/2。  相似文献   

11.
将多物理场耦合活化烧结技术(Micro-FAST)和燃烧合成技术相结合,在WC-8Co原始粉末中加入一定量的Ti粉和C粉,通过原位合成了TiC,制备了尺寸为φ4 mm×4 mm的WC-TiC-Co微型圆柱硬质合金。研究了工艺参数对硬质合金性能和组织的影响。结果表明,WC-8Co-4Ti-2C和WC-8Co-6Ti的样品在成分检测中均检测出TiC相,同时还伴随着(W,Ti)C相的生成。WC-8Co-4Ti-2C和WC-8Co-6Ti的样品致密度随着烧结温度的增加而增加,最高可达到96.82%;同时,试样的微观孔隙减少。显微硬度及断裂韧性均随烧结温度的增加而减小,显微硬度最高可达1936.7 HV30,断裂韧性最高可达8.0270 MPa·m~(1/2),整体上WC-8Co-6Ti样品的力学性能要优于WC-8Co-4Ti-2C样品的。  相似文献   

12.
本文采用亚微米WC粉和纳米Co粉、亚微米WC粉和高能球磨后具有纳米晶组织的微米级Co粉这两种具有不同粒径匹配的混合粉末作为原料粉末,利用放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金。对不同原料粉末的SPS过程及烧结试样的显微组织和性能进行了系统的对比分析。实验结果表明,以两种混合粉末为原料均获得了平均晶粒尺寸在200nm以下的超细硬质合金材料,其中,采用亚微米WC粉和高能球磨的微米级Co粉利用SPS技术制备的材料相对密度达到98%以上,硬度达到HRA94.5,断裂韧性达到13.50MPa•m1/2,表明具有优良的综合性能。而采用亚微米WC粉和纳米Co粉利用SPS技术制备出的超细晶硬质合金的组织均匀性和性能较差。根据SPS技术的特殊烧结机理,对采用不同粒径匹配和结合状态的WC和Co混合粉末的SPS致密化机制进行了分析。  相似文献   

13.
放电等离子烧结和真空烧结超细WC-12Co硬质合金   总被引:3,自引:0,他引:3  
对比研究了放电等离子烧结(SPS)和真空烧结(VAS)平均粒径为160nm的WC-12Co硬质合金的组织和性能.研究结果表明:SPS烧结能使WC-12Co在较低温度、较短时间内完全致密化,烧结温度比真空烧结低250℃以上,烧结时间只有真空烧结的1/26.相对于真空烧结,SPS烧结的晶粒更细,硬度提高1.5%以上,抗弯强度提高12.6%以上.  相似文献   

14.
将原位合成WC-6Co复合粉末采用干袋式冷等静压压制成型(压制压力1×10~8 Pa、保压时间15 s),将压制好的坯料采用低压烧结炉烧结(烧结温度1360℃、烧结时间40 min、加压5 MPa、保温保压时间20 min),烧结制备超细YG6硬质合金,对合金的形貌、金相组织及物理力学性能进行分析。结果表明:原位合成WC-6Co复合粉末制备的超细YG6硬质合金,晶粒异常长大,WC平均晶粒尺寸为0.8μm,硬度HV_(30)为(21500±100) MPa,较传统超细YG6X硬度高。再将WC-6Co复合粉末采用滚动湿磨、压力式喷雾干燥、掺成型剂、挤压成型、低压烧结等工序制备超细YG6硬质合金,研究不同晶粒长大抑制剂配比、球磨时间、挤压压力、烧结温度对合金性能的影响。结果表明:添加0.3%VC、0.8%Cr_3C_2(质量分数),湿磨48 h,挤压压力24 MPa,烧结温度1340℃,制备的超细YG6硬质合金WC晶粒均匀,无异常长大的WC晶粒,WC平均晶粒度尺寸0.4μm,呈多边形,外形较圆。强度、硬度最高,抗弯强度TRS为(2250±20) MPa、硬度HV30为(22600±100) MPa。断口形貌为沿晶断裂,沿WC与WC晶界断裂或WC与Co晶界断裂。  相似文献   

15.
分别采用放电等离子烧结(SPS)及传统的感应熔炼+锻造+退火(VIMFA)的方法制备了成分为Fe-16Cr-2.5Mo (质量分数,%)的铁磁型阻尼合金。对比研究了SPS和VIMFA合金的组织与性能。结果表明,SPS合金具有较高的致密性。随着烧结温度的增加和保温时间的延长,Cr和Mo元素在α-Fe固溶体中的溶解度明显提高,组织均匀性得到显著改善。与VIMFA合金相比,SPS合金具有相对较低的饱和磁化强度和相对较高的矫顽力。但SPS合金仍然拥有优良的阻尼性能,且随着烧结温度的升高和保温时间的延长,其阻尼能力逐渐增加。SPS合金比VIMFA合金拥有明显提高的抗压缩强度,且随着烧结温度的升高呈现出逐渐增加的趋势。  相似文献   

16.
采用放电等离子体烧结(SPS)技术制备出cBN-WC-12Co硬质合金,分析了cBN的热稳定性,研究了cBN添加量和烧结温度对合金硬度和致密度的影响,并讨论了cBN强化机理。结果表明:cBN的热稳定性温度为1355℃,cBN-WC-12Co合金的烧结致密化最低温度在1150℃左右,当烧结温度为1250℃,cBN保持了较好的热稳定性,不发生相变;在相同烧结温度下,cBN-WC-12Co合金致密性均要好于WC-12Co合金;1150℃时合金C15的致密度和硬度(HV10)均达到最大值,分别为99.7%和19 970 MPa;当cBN含量低于15 vol%时,在一定程度上,cBN含量的增加有利于抑制合金中WC晶粒长大,并通过WC晶粒的毛细吸附促进合金致密化;合金中的cBN可以阻止裂纹等缺陷进一步扩展,有利于改善合金力学性能。  相似文献   

17.
以自蔓延高温合成(SHS)的Ti2AlC粉体为原料,利用放电等离子烧结技术(SPS)研究了Ti2AlC陶瓷的烧结制备。结果表明:烧结温度1250℃,压力20MPa,真空烧结,保温5min,可获得相对密度98.6%,维氏硬度为4.3GPa的致密烧结块体;烧结样品的维氏硬度随烧结温度升高而增大,但高于1250℃后随温度升高反而减小,SPS方法烧结Ti2AlC陶瓷的最佳温度为1250℃,当烧结温度≥1350℃时Ti2AlC分解;SEM分析表明,SPS技术烧结制备的Ti2AlC陶瓷片层尺寸随烧结温度的升高而增大。  相似文献   

18.
采用放电等离子体烧结(SPS)技术制备出cBN-WC-12Co硬质合金,分析了cBN的热稳定性,研究了cBN添加量和烧结温度对合金硬度和致密度的影响,并讨论了cBN强化机理。结果表明:cBN的热稳定性温度为1355℃,cBN-WC-12Co合金的烧结致密化最低温度在1150℃左右,当烧结温度为1250℃,cBN保持了较好的热稳定性,不发生相变;在相同烧结温度下,cBN-WC-12Co合金致密性均要好于WC-12Co合金;1150℃时合金C15的致密度和硬度(HV10)均达到最大值,分别为99.7%和1997;当cBN含量低于15vol%时,在一定程度上,cBN含量的增加有利于抑制合金中WC晶粒长大,并通过WC晶粒的毛细吸附促进合金致密化;合金中的cBN可以阻止裂纹等缺陷进一步扩展,有利于改善合金力学性能。  相似文献   

19.
《硬质合金》2017,(6):413-418
以水溶液化学法制备的WC-6%Co纳米复合粉体为原料,利用放电等离子烧结(spark plasma singtering,SPS)技术制备了超细硬质合金。研究了烧结温度对硬质合金显微组织和力学性能的影响,分析了纳米粉体烧结的致密化过程。结果表明:随着烧结温度的升高,烧结致密性、硬度和断裂韧性都呈现先增加后降低的变化趋势,在升温速度为100℃/min,烧结温度为1 250℃,保温时间5 min,压力为30 MPa的工艺条件下,利用SPS技术可制备综合力学性能良好的超细晶硬质合金,平均晶粒大小为420 nm,维氏硬度为1 969 HV30,断裂韧性为10.7 MPa·m~(1/2)。  相似文献   

20.
采用颗粒度3μm的超细微合金铁粉作原料,对粉末进行SPS烧结。探究了烧结温度、保温时间对烧结体致密度、微观组织、显微硬度及压缩性能的影响规律。结果表明,当烧结温度设定为900℃,保温时间为7 min时能制备出具有细晶结构的微米级致密烧结铁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号