首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了考察轧制工艺参数对板材显微组织和力学性能的影响,通过不同温度和轧制变形量的热轧工艺得到具有不同晶粒尺寸、基面织构强度和孪晶类型的AZ31镁合金轧制板材。拉伸孪晶、压缩孪晶和双孪晶的体积分数与AZ31镁合金轧制板材的晶粒尺寸有关。当轧制温度为523 K、轧制变形量为10%时轧制得到的板材,三种类型孪晶的体积分数最高,此时晶粒尺寸最大。在轧制温度分别为523和473 K时,板材发生完全动态再结晶的临界变形量分别为30%和40%。拉伸实验结果表明:随着轧制变形量的增加,在第一阶段,轧制后板材屈服强度的提高主要依赖于晶粒细化强化和织构强化;当晶粒尺寸随变形量的增加不再发生明显的细化时,板材的屈服强度主要受织构弱化的影响。  相似文献   

2.
为了改善传统热轧AZ31镁合金板材的微观组织,提升其综合力学性能,本文采用二道次变路径轧制与深冷处理相结合的方法,研究了深冷处理对二道次不同路径轧制下AZ31镁合金微观组织和力学性能的影响。结果表明:经深冷处理后,AZ31镁合金轧制板材晶粒平均尺寸显著细化至7.8μm,织构强度能够由16弱化至9.5,合金组织中有孪晶生成,少量的第二相在晶界处析出。此外,二道次同一路径轧制下的板材经过20 min深冷处理,塑性得到极大改善,断裂伸长率高达23.2%;与传统轧制工艺相比,二道次交叉路径轧制板材经20 min的深冷处理,其硬度、抗拉强度分别由68 HV和246 MPa提升至75.8 HV、268 MPa。  相似文献   

3.
为了获得基面织构强度弱化、室温埃里克森值高的镁合金板材的热轧工艺,采用异步轧制研究轧制温度为250?450℃、道次压下率为15%?35%、异速比为1:1.5时轧制工艺对镁合金宏观织构和室温成形性能的影响,并以此设计一组轧制工艺,使轧制后合金织构强度明显弱化,室温埃里克森值得到明显提高。结果表明:提高轧制温度、减小道次压下率可以有效地弱化基面织构,提高镁合金室温成形性能。但是在450℃、道次压下率为5%时,轧制后板材晶粒粗大,成形能力较低。经轧制温度为450℃、道次压下率为10%的工艺轧制后板材具有优良的室温成形性能,即室温埃里克森值为5.35 mm,此时基面织构强度为9852。  相似文献   

4.
探讨采用小异速比多道次异步轧制技术提高AZ31镁合金板材室温成形性能的可行性,研究异步轧制板材微观组织的特点、形成机理及其与成形性能间的内在联系。结果表明:多道次异步轧制所累积的剪切应变能有效促进压缩孪晶的交互作用,细化合金晶粒组织,削弱(0002)基面的织构强度;异步轧制AZ31镁合金板材后续退火处理后的室温伸长率和Erichsen值分别可达32%和6.14mm;(0002)基面织构减弱和塑性应变比的降低是板材室温成形性能提高的根本原因。  相似文献   

5.
AZ31镁合金板材双向循环弯曲的孪晶组织及织构   总被引:1,自引:0,他引:1  
采用等温双向循环弯曲工艺(bidirectional cyclic bending technology,BCBT)改善了AZ31镁合金板材的微观组织、织构和力学性能。循环弯曲变形能够产生压缩变形与拉伸变形的交替变化,使镁合金材料发生压缩变形→孪晶组织形成→发生动态再结晶→孪晶消失→晶粒细化的组织演变过程,形成分布均匀的细小的晶粒组织,改善了镁合金材料性能。AZ31镁合金板材在变形温度为483 K时经过3个道次的等温双向循环弯曲变形后,基面织构得到明显弱化,织构强度由原始9.59降低到变形后3.54,平均晶粒尺寸为12.2μm。在变形温度443 K,经过1个道次变形后,AZ31镁合金板材的抗拉强度为325 MPa,屈服强度为225 MPa。与原始坯料力能参数相比,抗拉强度提高了19%,屈服强度提高了28%。当变形温度483 K循环变形3道次时,材料的伸长率为17.1%,比原始材料提高了42%。  相似文献   

6.
研究了板坯加热温度、退火温度以及冷轧道次加工率对AZ31变形镁合金轧制能力的影响.结果表明,当加热温度为350℃,轧制速度为0.4m/s时,AZ31镁合金板材的热轧道次极限加工率可以达到34.62%(无裂纹)和59.23%(无表面裂纹);将热轧态板材分别在250℃~350℃温度,退火40min后,板材显微组织中晶粒大小均匀,维持在5μm~6μm水平;板材具有良好的综合力学性能,其抗拉强度为:230Pa~240MPa,屈服强度为:135MPa~175MPa,延伸率为:12%~15%.当采用350℃×40min退火后,板材在冷轧道次加工率为5%~10%时,总加工率可以达到40%以上.  相似文献   

7.
本文研究了不同轧制变形量和轧制速度对AZ31镁合金板材微观组织和力学性能的影响。轧制变形可显著细化AZ31镁合金板材的晶粒尺寸并提高其综合力学性能。当轧制速度为5m/min,轧制变形量为50%时,板材平均晶粒尺寸最细可达到9μm,其抗拉强度、屈服强度和延伸率分别提高到280MPa、180MPa和30%以上,同时探讨了AZ31镁合金屈服强度与晶粒大小之间的关系。在大量AZ31镁合金轧制相关文献和本文一系列实验研究的基础上,对比分析了不同轧制工艺对AZ31镁合金综合力学性能的影响。研究表明,本文所采用轧制工艺可显著提高AZ31镁合金板材的综合力学性能,同时降低板材轧向和横向的各向异性。  相似文献   

8.
研究了不同轧制变形量和轧制速度对AZ31镁合金板材微观组织和力学性能的影响。轧制变形可显著细化AZ31镁合金板材的晶粒尺寸并提高其综合力学性能。当轧制速度为5 m/min,轧制变形量为50%时,板材平均晶粒尺寸最细可达到9μm,其抗拉强度、屈服强度和延伸率分别提高到280、180 MPa和30%以上,同时探讨了AZ31镁合金屈服强度与晶粒大小之间的关系。在大量AZ31镁合金轧制文献数据和本实验一系列数据的基础上,对比分析了不同轧制工艺对AZ31镁合金综合力学性能的影响。研究表明,本实验所采用轧制工艺可显著提高AZ31镁合金板材的综合力学性能,同时降低板材轧向(RD)和横向(TD)的各向异性。  相似文献   

9.
取初始织构为c轴与板面法向垂直的强织构AZ31镁合金板材为初始样品,经液氮温度深低温轧制多道次至不同变形量,研究所得轧制板材的显微组织与织构演变,及其对轧制力学性能的影响。利用SEM、EBSD和XRD表征分析了轧制板材的显微组织和织构,应用准静态单轴拉伸实验分别测试了深低温轧制板材沿轧向(RD)和横向(TD)的室温力学性能。研究表明,{1012}拉伸孪晶是深低温轧制强织构AZ31镁合金板材中的主导孪晶类型,其对轧制板材的微观组织和织构影响较为显著。轧制变形后,大量的拉伸孪晶晶界不但对晶粒起到了分割碎化作用,并且由于孪晶对取向的剧烈改变,使得板材在轧制变形后c轴平行于ND的织构组分加强。深冷轧制板材的强度有所提高,但是延伸率却急剧下降,沿着RD方向的强度要高于TD方向的强度。  相似文献   

10.
针对不同热轧工艺制备的7B50-T7751铝合金厚板,通过金相显微镜、EBSD等方法对合金的组织特征进行了表征与分析,并对比分析了不同热轧工艺制备的板材的室温拉伸性能和断裂韧性。结果表明,轧制过程使板材织构呈不均匀分布,板材1/4厚度位置主要是变形织构;1/2厚度位置主要是再结晶织构,织构强度较1/4厚度位置的弱。通过较少轧制道次、提高道次变形量、提高终轧温度可以使板材在热轧过程中充分回复,释放变形储能,在后续热处理后不同厚度位置均保留变形织构。变形织构可以有效提高合金的断裂韧性和拉伸性能,同时也增加了厚板的各向异性。  相似文献   

11.
采用常规轧制(NR)、异步轧制(DSR)和交叉轧制(CR)3种不同工艺来获得AZ31镁合金板材并进行室温成形性能的研究。结果表明:AZ31镁合金板材的综合力学性能不仅与晶粒尺寸有关,还与晶粒取向有关。基面织构的减弱可明显提高板材的胀形性能。异步轧制明显降低板材基面织构强度,使板材室温冲压性能得到提高。交叉轧制使晶粒显著细化,基面织构增强,提高了板材的力学性能,却降低其冲压成形性能;同时交叉轧制可以减弱板材各向异性。研究结果为改善镁合金室温塑性与成形性能提供了理论依据和新思路。  相似文献   

12.
脉冲电流轧制对AZ31镁合金微观组织与力学性能的影响   总被引:1,自引:0,他引:1  
对比研究脉冲电流轧制工艺与温轧工艺对AZ31镁合金板材的力学性能、织构、微观组织与沉淀相等方面的影响。结果表明:脉冲电流具有促进冷轧AZ31镁合金低温再结晶能力的作用。脉冲电流轧制后的镁合金板材组织由细小的等轴再结晶粒与析出相构成,没有发现孪晶组织,并且完全再结晶,原始晶粒均被细小的再结晶晶粒取代,再结晶晶粒内的位错密度低。而温轧镁合金组织则由稍拉长变形孪晶、粗大的再结晶晶粒和析出相构成,再结晶的晶粒内位错密度高。两种轧制方式下的镁合金析出相均为Mg17Al12。脉冲电流轧制后镁合金的织构具有典型基面织构的特征,而脉冲电流轧制镁合金的织构则出现横向偏转;脉冲电流轧制后镁合金的屈服强度与伸长率均比温轧镁合金的大,但抗拉强度正好相反。  相似文献   

13.
变形工艺对AZ31B镁合金薄板组织与力学性能的影响   总被引:1,自引:0,他引:1  
将不同厚度的铸态AZ31B变形镁合金板加热至673K,进行多道次轧制,每道次的下轧量约为1mm.最终轧制成2mm厚的薄板.对热轧板进行523Kx60min的退火处理;并对热轧态和退火态的薄板进行组织观察与力学性能测试.结果表明,AZ31B镁合金铸板经过热轧后,组织得到明显细化,力学性能得到大幅度提高.当应变量为1.4时,热轧态AZ31B镁合金板材的抗拉强度为290MPa,伸长率为18%;热轧板经523Kx60min退火处理后,合金的抗拉强度较热轧态略有下降,但伸长率大幅度提高,合金呈现良好的组织与力学性能.  相似文献   

14.
为了获得AZ31镁合金轧制织构(0002)基面密度和轧制条件的定量关系,在压下量为20%~40%、轧制温度为300~500°C的条件下对AZ31镁合金进行热轧试验。采用板材中嵌入镁合金圆柱的方法计算板材厚度方向的剪切应变和等效应变量。利用光学金相显微镜、X射线衍射和EBSD技术检测轧制板材的显微组织、表面层和中心层(0002)基面织构密度。定量分析应变、动态再结晶和孪晶对AZ31镁合金轧制板材织构的影响。结果表明:在相同应变下,轧制开始温度为400°C时,(0002)基面织构极密度最高,并得到了(0002)基面织构极密度随温度和应变的变化规律。  相似文献   

15.
采用商用连铸连轧AZ31镁合金板材,通过小辊径非对称轧制工艺,研究在150,200,250℃温度条件下多道次非对称轧制对镁合金板材组织、织构和力学性能的影响。结果表明,不同轧制温度下,镁合金板材的晶粒细化机理不同,150℃时以孪晶细化为主,部分晶粒发生动态再结晶,200和250℃时板材晶粒细化机理为动态再结晶。对比分析了对称轧制和非对称轧制板材织构演化规律,随着轧制温度的升高,非对称轧制板材基面织构依次增强,但明显低于对称轧制板材。  相似文献   

16.
实验研究了经不同道次差温热轧AZ31镁合金的金相组织,结合对轧制过程,尤其是轧件温度场的数值模拟结果,分析了AZ31镁合金差温热轧过程晶粒细化机制与主要影响因素,获得了通过轧制过程动态再结晶,使轧材晶粒尺寸随轧制道次增加,而持续细化的工艺参数,并制备出平均晶粒尺寸为5μm左右的细晶AZ31镁合金板材。  相似文献   

17.
对AZ31镁合金薄板分别进行多道次小压下及大压下轧制,平均道次压下率分别为14.5%和46%,研究两种轧制方式下AZ31镁合金的组织演变与力学性能。结果表明,小压下轧制AZ31镁合金板材表面氧化严重,组织逐渐均匀变细小,力学性能逐渐升高;大压下轧制方式AZ31镁合金板材表面氧化程度小,但是随着道次增加,表面出现薄屑,组织逐渐均匀细小,而剪切带越来越明显,力学性能逐渐下降。大压下轧制的板材组织中出现剪切带能够明显降低其力学性能。大压下轧制过程中,动态再结晶一直发挥重要作用,而小压下轧制初期主要变形机制为滑移,随着道次增加动态再结晶逐渐参与协调变形。  相似文献   

18.
在变形温度250~450℃、变形速率0.005~5s-1和道次间隔时间15~240s下对AZ31B镁合金进行了双道次等温压缩试验,研究不同变形工艺条件对AZ31B镁合金道次间软化规律的影响,建立了AZ31B镁合金道次间软化率预测模型。根据轧制残余应变产生的原因提出了多道次轧制过程中残余应变率的计算方法。研究结果表明:随着变形温度和变形速率的提高,材料的静态软化率逐渐增大,道次间间隔时间越长材料软化程度越大。建立的道次间静态软化率计算模型能够很好地表征AZ31B镁合金道次间软化规律,平均相对误差为12.58%。进一步对残余应变率的精确计算能够为AZ31B镁合金多道次轧制过程中轧制力的求解提供理论支持。  相似文献   

19.
采用不同压下量对具有基面织构的AZ31镁合金板材进行了多道次冷轧实验。并结合各个变形系Schmid因子的计算,分析了变形机制对冷轧变形能力的影响。结果表明:AZ31镁合金板材道次压下量(即咬入角)越小,无裂纹时极限变形量越大,其中每道次压下量为2.22%,极限变形量可达到26.67%(无裂纹);对基面织构取向晶粒,拉伸孪生{1012}和压缩孪生{1011}以及锥面c+a滑移的Schmid因子绝对值均随着咬入角的增大而减小,柱面滑移(0110)[2110]与(1100)[1120]两个滑移系Schmid因子值也随咬入角的增大而减小,在摩擦条件下,基面滑移的Schmid因子不为零;变形能力提高的原因主要在于低压下量有利于多变形系开动。  相似文献   

20.
介绍了热轧、冷轧、交叉轧制、累积叠轧、不对称轧制等不同的镁合金板材轧制工艺。分析了不同轧制工艺对应板材的组织特点及晶粒细化机制。分析了不同轧制工艺下板材织构特点及形成原因。对提高镁合金板材性能,改进轧制工艺提供参考借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号