首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elongational rheology of solutions of cellulose in the ionic liquid solvent 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) was measured at 80, 90, and 100°C; 8, 10, and 12 wt% cellulose; Hencky strains 5, 6, 7; and strain rates from 1 to 100 s?1. Master curves were generated by shifting the elongational viscosity curves with respect to temperature and Hencky strain. Also, general master curves were generated by simultaneously shifting with respect to both temperatures and Hencky strain. From the Arrhenius plots of the temperature shift factors, the activation energy for elongational flow was determined. The elongational rheology of these solutions was elongational strain rate thinning similar to that of their shear behavior and polymer melts and they were also strain hardening. Both effects and the viscosity increased with cellulose concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Rheological properties of cotton pulp dissolved in 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) solutions were characterized using an advanced rheometer. The complex viscosity, dynamic modulus, and shear viscosity at different temperature were studied. In the steady shear measurements, all the solutions show a shear‐thinning behavior at high shear rates. The complex viscosity as a function of frequency was fitted by extended Carreau–Yasuda model. In all cotton pulp/[Bmim]Cl solutions, the complex dynamic viscosity (η*) and steady shear viscosity (ηa) followed the Cox–Merz rule only at lower frequency. The effects of tested temperature on viscosity and viscoelastic behavior of the solutions were also investigated. The value of activation energy for the dissolution of cotton pulp in ionic liquids was 65.28 kJ/mol at the concentration of 10 wt% and was comparable with the ones for the dissolution of cellulose in NMMO. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

3.
Study of melts rheological properties of unvulcanized and dynamically vulcanized polypropylene (PP)/ethylene‐propylene‐diene rubber (EPDM) blends, at blending ratios 10–40 wt %, EPDM, are reported. Blends were prepared by melt mixing in an internal mixer at 190°C and rheological parameters have been evaluated at 220°C by single screw capillary rheometer. Vulcanization was performed with dimethylol phenolic resin. The effects of (i) blend composition; (ii) shear rate or shear stress on melt viscosity; (iii) shear sensitivity and flow characteristics at processing shear; (iv) melt elasticity of the extrudate; and (v) dynamic cross‐linking effect on the processing characteristics of the blends were studied. The melt viscosity increases with increasing EPDM concentration and decreased with increasing intensity of the shear mixing for all compositions. In comparison to the unvulcanized blends, dynamically vulcanized blends display highly pseudoplastic behavior provides unique processing characteristics that enable to perform well in both injection molding and extusion. The high viscosity at low shear rate provides the integrity of the extrudate during extrusion, and the low viscosity at high shear rate enables low injection pressure and less injection time. The low die‐swell characteristics of vulcanizate blends also give high precision for dimensional control during extrusion. The property differences for vulcanizate blends have also been explained in the light of differences in the morphology developed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1488–1505, 2000  相似文献   

4.
Polymer melts exhibit unique rheological behaviors at high shear rate up to 106 s?1, which is a common phenomenon in micro‐injection molding. Both online and commercial capillary rheometers, which were modified to allow regulation of back pressure, were used for measuring the melt shear viscosities of polystyrene (PS), polypropylene (PP), and linear low‐density polyethylene (LLDPE) under high shear rates. The rheological characteristics of the three melts were compared through the systematical analyses for three significant effects, namely the end pressure loss, pressure dependence, and dissipative heating in capillary flow. Pronounced end effect begins to appear at the shear rates of 1.6 × 105, 8.0 × 105, and 2.8 × 106 s?1 for the PS, PP, and LLDPE melts, respectively. The significance of the end effect can be ordered as PS > PP > LLDPE. It seems that the polymers with more complex molecular structures exhibit a higher degree of divergence between the comprehensively corrected and uncorrected melt viscosity curves. Moreover, the dissipation effect begins to predominate over the pressure effect under the lowest shear rate of 105 s?1 for the PS melt among the three melts. POLYM. ENG. SCI., 55:506–512, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
Four metallocene polyethylenes (PE), one conventional low density polyethylene (LDPE), and one conventional linear low density polyethylene (LLDPE) were characterized in terms of their complex viscosity, storage and loss moduli, and phase angle at different temperatures. The effects of molecular weight, breadth of molecular weight distribution, and long‐chain branching (LCB) on the shear rheological properties of PEs are studied. For the sparsely long‐chain branched metallocene PEs, LCB increases the zero‐shear viscosity. The onsets of shear thinning are shifted to lower shear rates. There is also a plateau in the phase angle, δ, for these materials. Master curves for the complex viscosity and dynamic moduli were generated for all PE samples. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
The rheological properties of high concentrated wood pulp cellulose 1‐allyl‐3‐methy‐limidazolium Chloride ([Amim]Cl) solutions were investigated by using steady shear and dynamic viscoelastic measurement in a large range of concentrations (10–25 wt %). The measurement reveals that cellulose may slightly degrade at 110°C in [Amim]Cl and the Cox–Merz rule is valid for 10 wt % cellulose solution. All of the cellulose solutions showed a shear thinning behavior over the shear rate at temperature from 80 to 120°C. The zero shear viscosity (ηo) was obtained by using the simplified Cross model to fit experimental data. The ηo values were used for detailed viscosity‐concentration and activation energy analysis. The exponent in the viscosity‐concentration power law was found to be 3.63 at 80°C, which is comparable with cellulose dissolved in other solvents, and to be 5.14 at 120°C. The activation energy of the cellulose solution dropped from 70.41 to 30.54 kJ/mol with an increase of concentration from 10 to 25 wt %. The effects of temperature and concentration on the storage modulus (G′), the loss modulus (G″) and the first normal stress difference (N1) were also analyzed in this study. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Polylactide (PLA) and calcium carbonate (CaCO3) were melt blended using a twin‐screw extruder. The morphology of PLA/CaCO3 composites was observed by scanning electronic microscopy. The linear and nonlinear shear rheological behaviors of PLA/CaCO3 melts were investigated by an advanced rheology expended system. The results show that the CaCO3 particles are evenly dispersed in the PLA matrix. The incorporation of low CaCO3 content (<20%) causes the reduction of the storage moduli, loss moduli, and dynamic viscosities whereas high CaCO3 content (>30%) leads to the increase of the storage moduli, loss moduli, and dynamic viscosities. The composites with high CaCO3 content show pseudo‐solid‐like behaviors at low frequency. High CaCO3 content also results in a significant increase of flow activation energy and a dramatic decrease of flow index n, which is in consistent with the more serious shear‐thinning tendency of high‐filled PLA composites melts. The particular rheological responses might be attributed to the formation and destruction of the percolating network. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The orientation and relaxation behaviors of a low‐density polyethylene melt and polypropylene melts with different melt indices undergoing a shear flow in a restricted channel were investigated by using ultrasound. A capillary rheometer was used to force the polymer melt through a slit die equipped with pressure, temperature, and ultrasound sensors, and the variation of ultrasound velocity traversing the melt was measured. Experimental results revealed that due to different mechanisms involved, the relaxations of orientation and disorientation processes show different dependences of ultrasound velocity on shear rate, temperature, and melt index. POLYM. ENG. SCI., 2008. Published 2008 Society of Plastics Engineers  相似文献   

9.
Shear dynamic and elongational rheology of concentrated solutions of cellulose in N‐methylmorpholine oxide monohydrate (lyocell) were investigated at different temperatures and for two Hencky strains. Shear thinning and strain thinning behavior is characteristic for dynamic viscosity and effective elongational viscosity of lyocell solutions. Body forces, enthalpy, and entropy of orientation are high at low temperature and high deformation rates, showing a strong orientation effect. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1369–1377, 2000  相似文献   

10.
Amphiphilic β‐cyclodextrin‐based azo aromatic poly(ether urethane)s with different soft segment lengths have been synthesized and characterized. Hydrogen bonding in these systems was demonstrated by Fourier transform infrared spectroscopy analysis (carbonyl stretching region). A rheological study was performed on solutions of the synthesized poly(ether urethane)s in N,N‐dimethylformamide at various concentrations and temperatures by employing parallel plate geometry, and a comparative evaluation of the influence of the structural components on the viscometric responses was performed. The rheological behaviour was found to be strongly dependent on the chemical composition of the synthesized polyurethanes which promotes self‐assembly and structuring in solution. Hard segment content and polymer concentration influence pseudoplastic shear‐thinning flow behaviour. The rheology can be interpreted in terms of hydrophobic associations and chain entanglements and a hydrogen bonding network occurring in solution. The start‐up flow of the polymer solutions is determined by the lifetime of the associative polymer segments. Shear stress plateaux indicative of ‘shear banding’ behaviour explained by the structuring of the polymer solutions at increased temperatures were obtained. The studied amphiphilic polyurethane solutions are thermoresponsive systems exhibiting viscosity increase with increasing temperature contrary to the usual Arrhenius thermo‐thinning behaviour. At constant shear rate viscosity was found to increase with increasing temperature due to thermo‐association. © 2014 Society of Chemical Industry  相似文献   

11.
This research deals with the melt rheology of isotactic polypropylene (iPP) reinforced with short glass fibers (SGF) coated with electrically conductive polyaniline (PAn). Composites containing 10, 20, and 30 wt % PAn‐SGF were studied. Moreover, a composite of 30 wt % PAn‐SGF was also prepared with a blend of iPP and PP‐grafted‐maleic anhydride (iPP/PP‐gMA). The composites showed linear viscoelastic regime at small strain amplitudes. The onset of nonlinearity decreased as the concentration of filler increased. The time‐temperature superposition principle applied to all composites. The filler increased the shear moduli (G′, G″) and the complex viscosity η*. Steady‐state shear experiments showed yield stress for the composites with 20 and 30 wt % PAn‐SGF. Strikingly, the 10 wt % composite showed higher steady state viscosity than the 20 wt %. Rheo‐optics showed that shear induced disorder of microfibers at a concentration of 10 wt %. However, at 20 wt % concentration shear aligned the microfibers along the flow axis, this would explain the anomalous steady state viscosity values. The viscosity exhibited a shear thinning behavior at high shear rates for all composites. Creep experiments showed that the filler induced greater strain recovery in the composites and that the amount of strain recovery increased as the PAn‐SGF concentration increased. However, the enhancement of strain recovery (as well as shear viscosity) was more significant when using the iPP/PP‐gMA blend, suggesting greater adhesion between this matrix and the filler PAn‐SGF. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Nanosized calcium carbonate (nano‐CaCO3)‐filled poly‐L ‐lactide (PLLA) biocomposites were compounded by using a twin‐screw extruder. The melt flow behavior of the composites, including their entry pressure drop, melt shear flow curves, and melt shear viscosity were measured through a capillary rheometer operated at a temperature range of 170–200°C and shear rates of 50–103 s?1. The entry pressure drop showed a nonlinear increase with increasing shear stress and reached a minimum for the filler weight fraction of 2% owing to the “bearing effect” of the nanometer particles in the polymer matrix melt. The melt shear flow roughly followed the power law, while the effect of temperature on the melt shear viscosity was estimated by using the Arrhenius equation. Hence, adding a small amount of nano‐CaCO3 into the PLLA could improve the melt flow behavior of the composite. POLYM. ENG. SCI., 52:1839–1844, 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
The effects of compatibilizing reactions on the viscoelastic properties and morphology of ethylene‐methyl acrylate copolymers were studied. Potentially reactive blends of styrene‐maleic anhydride copolymer (SMAH) and a terpolymer of ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA) were compared with a non‐reactive blend of SMAH and an ethylene/methyl acrylate (E‐MA) copolymer with similar rheological properties. Melt mixing was carried out in a batch mixer and in a co‐rotating twin screw extruder. The morphology of the reactive blends showed smaller domain sizes than the non‐reactive blends, and the viscoelastic properties of the blends were very different. The storage and loss moduli and the complex viscosity of the reactive blends were greater than those of non‐reactive blends. The reactive blends had a higher zero shear viscosity, plateau modulus and mean relaxation time than their non‐reactive counterparts, indicating a higher degree of melt elasticity. The melt elasticity was maximum at 25% functionalized ethylene‐methyl acrylate concentration.  相似文献   

14.
An online rheometer with an innovative system of height‐adjustable and independently temperature‐controlled slits was designed to measure the shear viscosity of extruded wheat bran fiber‐containing starchy materials. The range of melt pressures and temperatures, obtained with a die, could be covered by the rheometer. A close ingredient thermomechanical history in the extruder was achieved both with the die and the rheometer, while covering an apparent shear rate from 5 to 30 s–1. Although minor technical problems remained, first rheological data were obtained and showed a pseudoplastic flow behavior for all recipes. The flow curves were fitted by a power law model. Wheat bran fiber addition influenced both the K‐ and n‐values, leading to more shear‐thinning melt behavior and an increase in true shear viscosity. Only a limited effect on these values was found in these preliminary experiments when further increasing the fiber content.  相似文献   

15.
A series of wholly aromatic thermotropic copolyesters based on 4‐hydroxybenzoic acid, hydroquinone, and 2,6‐naphthalene dicarboxylic acid were synthesized by direct melt polymerization with or without different added transesterification catalysts. Nine procedures for calculation of the intrinsic viscosities from a single viscosity measurement for polymer solutions, including a proposed one, were applied for the thermotropic copolyesters in 1,1,1,3,3,3‐hexafluoro‐2‐propanol at 30°C. Various forms of the Huggins and Kraemer equations, singly or combined, yielded intrinsic viscosities that were in good agreement with extrapolated values obtained in the usual manner from multipoint viscosity measurements over a wide range of concentrations. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3396–3401, 2001  相似文献   

16.
Rheological behavior of polypropylene (PP)/organoclay nanocomposites varying in compatibilizer (PP‐g‐MA) and organoclay concentration was investigated. The samples were prepared by melt intercalation method in an internal mixer. The wide angle X‐ray diffraction patterns and results of rheological measurements showed that the compatibilizer had strong influence in increasing the interlayer spacing. The observed low frequency liquid‐like to solid‐like transition and apparent yield stress in simple shear flows, along with convergence of transient shear stress to nonzero values in stress relaxation after the cessation of flow experiments, were found to be consistent with formation of a physical network in quiescent conditions which could be easily ruptured with applying low shear rates. The values of stress overshoot strain in flow reversal experiments were independent of shear rate, organoclay, and compatibilizer content. From the results of frequency sweep experiments in different nonlinear strain amplitudes it was shown that extended Cox‐Merz analogy was valid in nonlinear dynamic deformations while the shear viscosity showed positive deviation from this analogy with higher deviations at lower shear rates. Results of storage modulus recovery and flow reversal experiments at different shear rates suggested that network structure is reformed with a much slower rate compared to the rotational relaxation of organoclay platelets. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
Preparation and shear and elongational rheology of cellulose solutions of different degrees of polymerization (DP) in N‐methylmorpholine oxide monohydrate (lyocell) were investigated. The dissolution process takes place in two stages, depending on the content of low and high DP fractions from the dissolving pulp blends. The influence of the DP of cellulosic chains on elongational and shear viscosity is greater at low deformation rates. Low DP solutions behave more like viscous fluids and the increase of the chain length brings about an increase of the elastic component. Orientation induced by the convergence flow is enhanced by the higher DP cellulosic chains. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 396–405, 2001  相似文献   

18.
The dynamic rheological and mechanical properties of the binary blends of two conventional high‐density polyethylenes [HDPEs; low molecular weight (LMW) and high molecular weight (HMW)] with distinct different weight‐average molecular weights were studied. The rheological results show that the rheological behavior of the blends departed from classical linear viscoelastic theory because of the polydispersity of the HDPEs that we used. Plots of the logarithm of the zero shear viscosity fitted by the Cross model versus the blend composition, Cole–Cole plots, Han curves, and master curves of the storage and loss moduli indicated the LMW/HMW blends of different compositions were miscible in the melt state. The tensile yield strength of the blends generally followed the linear additivity rule, whereas the elongation at break and impact strength were lower than those predicted by linear additivity; this suggested the incompatibility of the blends in solid state. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Rheological properties of nylon‐1212 have been studied by means of Haake Rheometer. The effect of shear rate and temperature on the apparent vicosity of nylon‐1212 was discussed. A correlation of non‐Newtonian index with the temperature was obtained. The results showed that the apparent viscosity decreases with the increase of the temperature. With increasing shear rate, shear thinning of nylon‐1212 was observed clearly. From the relation of the temperature dependence of the polymer, we obtained the viscous flow activation energy. We conclude that the apparent viscosity is sensitive to temperature at lower shear stress because of higher viscous flow activation energy, and the temperature affect on the apparent viscosity becomes weaker at higher shear stress because of lower viscous flow activation energy. We have investigated the creep and elastic recovery of nylon‐1212. A creep test was carried out to define the linear viscoelastic range as 1.0 and 5.0 Pa for 195 and 190°C nylon‐1212 melts, respectively. A time‐dependent response was found for the creep and recovery phases at a lower applied shear stress. However, at higher shear stress, the creep and recovery phases were time‐independent. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 379–385, 2003  相似文献   

20.
Agricultural residues (cotton straw) were added as very small particles to polystyrene (PS) at different weight ratios by using a melt‐mixing technique. The dynamic mechanical tests were performed over a wide range of temperatures and frequencies by using an ARES rheometer (Rheometrics Scientific) operated in the dynamic mode. The dynamic mechanical properties in terms of the storage modulus (G′), loss modulus (G″), compliance moduli, loss tangent, and dynamic viscosity were studied and compared for PS and PS composite. The results showed that the dynamic mechanical moduli and viscosity were found to increase with the addition of cotton straw and rise further with its loading increasing. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 37–40, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号