共查询到20条相似文献,搜索用时 9 毫秒
1.
《中国有色金属学报》2017,(4)
采用电化学-量热法研究以LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2为正极材料的锂离子电池在不同环境温度和充放电倍率下的热电化学性能。结果表明:环境温度和充放电倍率是影响电池比容量的重要因素,随着充放电倍率和环境温度的增加,电池比容量逐渐减小。在低倍率(0.2C)下,电池充放电初始阶段的热流缓慢增大,且出现多个放热峰;而在较高倍率(0.5、1.0、2.0C)下,电池充放电初始阶段的热流快速增长,且充电和放电过程分别仅出现一个明显的放热峰。通过热电化学研究,可获得电池充放电过程的产热量、化学反应焓变(ΔrH_m)以及化学反应熵变(ΔrS_m)等热力学参数。 相似文献
2.
采用共沉淀法在连续搅拌反应器系统(CSTR)工艺体系中批量合成出镍钴锰三元氢氧化物前驱体Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2(622),掺加适量的Li_2CO_3高温焙烧后得到锂离子二次电池正极材料Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2。使用扫描电子显微镜(SEM)观察样品形貌,X射线衍射仪(XRD)及透射电子显微镜(TEM)分析合成样品的具体结构,利用充放电循环测试系统测试其电化学性能。结果表明,产物为二次粒子团聚而成近似球形颗粒;合成的样品具有典型的层状α-NaFeO_2结构。在电压范围为2.8~4.3 V,1 C倍率条件下,首次充放电容量分别为206和176 mAh·g~(-1),100次循环后库伦效率达到了85%。 相似文献
3.
采用溶胶-凝胶法合成锂离子电池正极材料Li1.2(Mn0.54Ni0.16Co0.08)O2,并用Al F3对这种材料进行表面包覆改性。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)等表征材料的结构和形貌。结果表明,合成的Li1.2(Mn0.54Ni0.16Co0.08)O2具有典型的层状α-Na Fe O2结构,AlF3均匀包覆在Li1.2(Mn0.54Ni0.16Co0.08)O2材料表面,包覆层厚度为5~7 nm。电化学测试表明,包覆Al F3后材料的电化学性能得到提高,在1C倍率下,包覆的AlF3材料的首次放电容量为208.2 m A·h/g,50次循环后容量保持率为72.4%,而未包覆AlF3的材料的首次放电容量和容量保持率分别为191.7 m A·h/g和51.6%。 相似文献
4.
在采用低温共沉淀-水热-煅烧法合成锂离子电池Fe-Ni-Mn体系正极材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的基础上,对合成的材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6进行V2O5的包覆改性研究,以提高材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的首次放电比容量和循环性能。用XRD、SEM、TEM、ICP光谱和恒流充放电测试研究包覆材料的结构和电化学性能。结果表明,V2O5包覆并没有改变材料的晶体结构,只存在于材料的表面,与未包覆的材料相比,V2O5包覆后的材料具有更好的首次放电容量和容量保持率。50周循环后,添加质量分数3%V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的放电比容量可以维持在200.3 mAh/g,大于未添加V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的194.0 mAh/g。CV测试表明,包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应。 相似文献
5.
采用喷雾干燥法制备锂离子电池用层状富锂锰基正极材料Li(1+x)Ni0.166Co0.166Mn0.667O(2.175+x/2)(x=0.3,0.4,0.5,0.6),通过X射线衍射(XRD)、扫描电子显微镜(SEM)、等离子体发射光谱(ICP)、热重-差热分析(TG-DSC)、比表面积、粒度分布和恒流充放电等测试手段对材料的结构、形貌及电化学性能进行表征。结果表明:所制得的富锂锰基正极材料为三方层状结构(mR3)的LiNi1/3Mn1/3Co1/3O2和单斜层状结构(C2/m)的Li2MnO3组成的固溶体,且具有多孔球形形貌。当x=0.4时,材料具有最优的电化学性能。在2.0~4.8 V电压范围内,25 mA/g电流密度下材料的首次放电比容量高达277.5 mA·h/g,20周循环后容量保持率达95.3%,500 mA/g电流密度下放电比容量仍达192.5 mA·h/g。 相似文献
6.
将前驱体Ni0.5Co0.2Mn0.3(OH)2以及前驱体和碳酸锂的混合物分别进行热处理,初步探讨其在高温热处理过程中的结构变化以及热处理方式对材料电化学性能的影响。采用X射线衍射(XRD)、热重-差热分析(TG-DSC)、扫描电镜(SEM)以及恒流充放电测试技术对合成材料物理性能和电化学进行测试和表征。结果表明:前驱体在热处理过程中,其结构经历由Me(OH)2→NiCoOOH→Mn(Ni,Co)2O4的转变过程;而前驱体与碳酸锂的混合物则经历由两相混合物→三元材料+Li2CO3→三元材料的结构转变过程;相比于单一高温平台热处理而言,采用低高温双平台热处理所合成的材料可有效降低阳离子混排,使其具有更好的电化学性能。电化学测试结果表明:在3.0~4.4V电压范围内,其在25℃、0.5C下首次放电比容量为160.5 mA·h/g,60次循环后,容量保持率达98.9%。 相似文献
7.
《稀有金属材料与工程》2015,(Z1)
以Li_2CO_3、ZrO_2、Er_2O_3、(NH_4)_2HPO_4为初始原料,采用传统的固相法合成了Li Zr_2(PO_4)_3基NASICON型固态电解质材料Li_(1+x)Er_xZr_(2-x)(PO_4)_3(x=0~0.2)。通过无压烧结和放电等离子烧结法(SPS)烧结得到致密的电解质片,采用无压烧结过程中在样品中加入少许的PVA使得样品烧结致密。利用XRD、SEM、EIS分别测得样品的结构、形貌以及电性能。结果表明:通过SPS烧结的样品致密度可以达到92.6%。使用SPS烧结后的样品Li1.15Er0.15Zr1.85(PO_4)_3在常温下的晶粒和总电导率分别为2.2×10~(-4)和8.8×10~(-6) S·cm~(-1)。样品的激活能为0.36 e V。 相似文献
8.
9.
《中国有色金属学报》2020,(9)
通过直接热处理以及补充锂元素二次烧结的方法对锂离子电池三元镍钴锰废料进行回收,并将其重新作为锂离子电池正极材料进行应用。采用扫描电镜、红外光谱、热重、电感耦合等离子体以及电化学测试等方法对材料性能进行检测。结果表明:温度高于700℃时可以有效去除报废材料中的PVDF,高温烧结可以一定程度上修复材料容量,而通过补充锂元素进行二次烧结的方法可以有效恢复废料性能,具有商业应用价值。此方法工艺简单,可以为锂离子电池正极层状材料的回收提供参考。 相似文献
10.
《中国有色金属学会会刊》2016,(5)
利用共沉淀法制备具有典型六边形α-NaFeO_2结构的正极材料Li[Ni_xCo_yMn_z]O_2(0.6≤x≤0.8)。XRD结果表明:(003)峰与(104)峰的强度比随镍含量的减少而增加,随钴含量的增加而增加。SEM结果表明:材料是由微小的初级颗粒聚集而成的二次颗粒,并且随锰含量的增加,初级颗粒和二次颗粒变大,同时Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2颗粒分布比较均匀,颗粒大小为100~300 nm。尽管锂离子电池Li/Li[Ni_xCo_yMn_z]O_2的首次放电容量随镍含量的减少而减小,但是循环和倍率性能却随锰或钴含量的增加而得到改善。Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2具有良好的循环性能,在循环50次后还能保持97.1%的容量保持率。 相似文献
11.
以碳酸氢铵为沉淀剂采用共沉淀法合成球形Co0.9Ni0.05Mn0.05CO3前驱体,以碳酸盐前驱体和Li2CO3为原料,在空气中通过固相反应制备出LiCo0.9Ni0.05Mn0.05O2正极材料,研究烧结温度对产物结构及电化学性能的影响。采用扫描电镜(SEM)、X射线衍射(XRD)和光电子能谱(XRS)分别表征样品的形貌、结构和元素价态。结果表明:不同烧结温度下合成产物的性能差别很大,较适合的合成温度为900℃;在3.0~4.5 V电压范围内,LiCo0.9Ni0.05Mn0.05O2显示出较好的倍率性能;在25℃测试条件下,材料在0.2C、0.5C、1C、5C和10C时的放电比容量分别为181.6、178.3、173.9、167.8和157.1 mA·h/g。 相似文献
12.
研究了Zr0.8Ti0.2(Ni0.6Mn0.2V0.2Cr0.05)x(x=1.8~2.4)贮氢合金中化学计量x对晶体结构和电化学性能的影响。结果表明:随着x值的增大,合金中C14相含量逐渐减少,C15相含量逐渐增加,C14和C15相的晶格常数均线性减小;随着x值的增大,合金电极的活化性能提高,高倍率放电性能和放电容量均先升高,至x=2.2时达到最大值(最大放电容量为370mAh/g);超化学计量合金电极的循环寿命随x值的增大而降低,但当x<2.2时,经充放电循环500次以后容量保持率仍在80%左右。当化学计量值x等于2.2时,合金电极的综合电化学性能最好。 相似文献
13.
以氧化钇溶胶为包覆前驱物,利用氧化钇和正极材料表面带电状态不同制备氧化钇包覆LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学测试等手段对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2包覆前后的物相结构、表面形貌及电化学性能进行研究。结果表明:氧化钇包覆并未影响LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的晶体结构,氧化钇以颗粒状分布在正极材料表面,氧化钇包覆层厚度在15~25nm,氧化钇在正极材料表面分布比较均匀。与未包覆LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2相比,氧化钇包覆后,材料在高电压下的循环稳定性有所提高,最佳包覆量为0.4%。氧化钇包覆有效降低材料在充放电过程中的极化和电荷转移电阻。 相似文献
14.
采用球磨湿混和旋转合成相结合的新工艺制备了锂离子电池正极材料 L i Ni0 .5Co0 .5O2 ,并对材料进行了粒度、化学成分以及电化学性能测试。球磨湿混工艺能将原料混合均匀 ,并能有效地使粒度细化。旋转合成工艺能使混合料在均匀的温度场中进行反应 ,并使反应产物粒度均匀和成分均匀。制备的 L i Ni0 .5Co0 .5O2 为单一的 α- Na Fe O2 层状结构 ,粉末粒度分布范围窄 ,平均粒径约为 8μm~ 10μm。电化学性能测试结果表明 ,在 0 .2 m A/cm2 充放电流密度和 3 .0 V~ 4 .2 V电压范围内 ,首次充电容量为 173 m Ah/g,放电容量为 14 8m Ah/g。循环次数达 3 0次时 ,放电容量还有 12 9m Ah/g,循环稳定性良好。球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能良好的L i Ni0 .5Co0 .5O2 正极材料。 相似文献
15.
锂离子电池正极材料LiNi_(0.5)Co_(0.5)O_2制备与电化学性能 总被引:3,自引:0,他引:3
采用球磨湿混和旋转合成相结合的新工艺制备了锂离子电池正极材料LiNi0.5Co0.5O2,并对材料进行了粒度、化学成分以及电化学性能测试。球磨湿混工艺能将原料混合均匀,并能有效地使粒度细化。旋转合成工艺能使混合料在均匀的温度场中进行反应,并使反应产物粒度均匀和成分均匀。制备的LiNi0.5Co0.5O2为单一的α-NaFeO2层状结构,粉末粒度分布范围窄,平均粒径约为8μm-10μm。电化学性能测试结果表明,在0.2mA/cm^2充放电流密度和3.0V-4.2V电压范围内,首次充电容量为173mAh/g,放电容量为148mAh/g。循环次数达30次时, 放电容量还有129mAh/g,循环稳定性良好。球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能良好的LiNi0.5Co0.5O2正极材料。 相似文献
16.
杨建林 《中国有色金属学报》2016,(4):829-835
利用电弧熔炼法制备Tb_xDy_(1-x)(Fe_(0.6)Co_(0.4))_2合金(0.27≤x≤0.40),对合金的磁性和磁致伸缩性能进行研究。利用XRD、交流初始磁化率测试仪、超导量子干涉仪和标准应变测试仪,对样品的物相组成、居里温度、磁化曲线和磁致伸缩性能进行表征。结果表明:当x≤0.27时合金的易磁化方向为á100?方向,当x≥0.30时合金的易磁化方向变为〈 111〉方向;合金的居里温度随x的增加而增加;x=0.32附近时合金的磁晶各向异性常数K_1有极小值,室温时合金在x=0.32附近时达到各向异性补偿;当x=0.32时饱和磁致伸缩系数达到9.57×10~(-4);随Co含量的增加,合金的各向异性补偿点向Tb含量高的方向移动。Tb_(0.32)Dy_(0.68)(Fe_(0.6)Co(0.4))_2合金具有高磁致伸缩系数和低各向异性,是一种实用的磁致伸缩候选材料。 相似文献
17.
采用低温燃烧法合成了锂离子电池正极材料LiNi0.5Mn0.5-xCrxO2(x=0,0.01,0.02,0.05,0.1),研究了Cr取代部分Mn对其结构和电化学性能的影响。充放电测试结果表明:Cr取代部分Mn对正极材料LiNi0.5Mn0.5-xCrxO2的电化学性能有重要的影响,用适量的Cr取代Mn(x=0.02)能够提高正极材料的放电比容量和循环稳定性。X射线衍射(XRD)分析和循环伏安(CV)测试显示,Cr对Mn的适量取代能抑制正极材料中的阳离子混排,降低电极材料的极化,改善其可逆性能。LiNi0.5Mn0.48Cr0.02O2在2.5~4.6 V之间以0.1 C速率充放电,首次放电容量为179.9 mAh/g,第50次循环放电容量仍保有171.0 mAh/g,容量保持率达到95.1% 相似文献
18.
结合共沉淀法和球磨辅助下的高温固相法,合成层状氧化物正极材料Li[Ni_(0.6)Co_(0.2)Mn_(0.2-y)Mg_y]O_(2-z)F_z(0≤y≤0.12,0≤z≤0.08),探究F-Mg掺杂对LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2材料的影响。与以往的研究相比,这种掺杂处理在首次库仑效率和循环性能方面的电化学性能得到实质改善。在充放电倍率为0.2C和电压范围为2.8~4.4 V的条件下,Li[Ni_(0.6)Co_(0.2)Mn_(0.11)Mg_(0.09)]O_(1.96)F_(0.04)的首次放电比容量和库伦效率分别为189.7 m A·h/g和98.6%,100次循环后容量保持率为96.3%。电化学阻抗谱(EIS)结果表明,Mg-F掺杂降低了电荷转移电阻,从而提高了反应动力学,这是材料具有更高倍率性能的主要原因。由于Li[Ni_(0.6)Co_(0.2)Mn_(0.11)Mg_(0.09)]O_(1.96)F_(0.04)具有优异的电化学性能,被看作是很有前景的新型锂离子电池正极材料。 相似文献
19.
(La0.8Nd0.2)2Mg(Ni0.8-xCo0.1Mn0.1Alx)9(x=0~0.15)系列合金经退火处理,合金电极具有较好的活化性能,经1~4次充放电循环就可达到最大放电容量,合金电极的最大放电容量Cmax得到提高,最大值为399.2 mA·h/g(x=0)。并随着Al替代量的增加,合金电极的吸放氢平台压降低,而吸氢滞后增大。同时,退火处理能明显改善合金电极的循环稳定性,经60次充放电循环后,合金电极的容量保持率(S60)最大值为76.7%(x=0.1)。 相似文献
20.
采用低温燃烧合成法,在柠檬酸-硝酸盐体系中合成了Ce1-xNdxO2-x/2(0≤x≤0.6)固溶体纳米粉体.X射线衍射(XRD)结果表明,Nd^3+取代Ce^4+形成具有单相立方萤石结构的固溶体,其晶格常数随Nd^3+掺杂浓度的增大而线性增加,晶粒尺寸在15-24am之间.透射电镜(TEM)结果表明,粉体颗粒尺寸在2m-40am之间,分散性较好,具有较高的烧结活性.Raman光谱结果表明,F2g宽化峰的出现与掺杂后固溶体中产生的氧空位有关,并且随着掺杂浓度的增加,氧空位数量也随之增加.X射线荧光光谱(XRF)的分析表明,实际掺杂浓度非常接近原始化学计量比. 相似文献