首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究了传统液态挤压铸造与半固态挤压铸造成形ZL104铝合金连杆的充填状态、微观组织及力学性能。结果表明:传统液态挤压铸造成形连杆充填饱满,但其抗拉强度及伸长率低于半固态挤压铸造成形连杆。对于半固态挤压铸造成形,浇注温度高于565℃时,铸件充填性能良好;平均晶粒尺寸及形状因子随浇注温度的升高而逐渐增大;连杆抗拉强度及伸长率先增加后减小。挤压压力高于25MPa时,铸件均充填饱满;挤压压力升高,平均晶粒尺寸不断减小且形状因子不断增大,连杆机械性能不断提高。模具预热温度升高,平均晶粒尺寸和形状因子不断增大,连杆机械性能逐渐提高。但当模具预热温度超过300℃时,平均晶粒尺寸进一步增大而其形状因子减小,导致连杆的机械性能下降。  相似文献   

2.
对CuSn10P1铜合金进行半固态触变反挤压成形试验。研究冷轧变形量、等温温度及等温时间对CuSn10P1铜合金的微观组织演变和力学性能的影响规律。结果表明:半固态触变反挤压能够有效地改善铜合金半固态成形件中的液相偏聚现象,冷轧变形量及等温处理工艺对半固态触变反挤压锡青铜微观组织和力学性能影响较大。随冷轧变形量的增加,平均晶粒尺寸先减小后增大,成形件的抗拉强度先升高后降低。随等温温度的升高和等温时间的延长,晶粒尺寸逐渐增大,成形件的抗拉强度先升高后降低。当冷轧变形量30%、等温温度900℃、等温时间20 min时,半固态触变反挤压CuSn10P1铜合金成形件的组织和性能较好且各部位均匀。  相似文献   

3.
采用流变挤压铸造制备了Al-5Zn-2Mg-1Cu-0.2Sc合金,通过拉伸试验、SEM和TEM等方法研究了浇注温度对半固态浆料、流变挤压铸造合金组织和力学性能的影响。结果表明,随着浇注温度降低,半固态浆料和流变挤压铸造合金初生α-Al相形貌逐渐转变为近球形,在晶界附近析出的第二相分布越来越均匀,平均晶粒尺寸减小,圆整度增加。当浇注温度为700℃时,半固态浆料初生相尺寸最小,约为35μm,平均形状因子约为0.49,流变挤压铸造后合金平均晶粒尺寸约为43μm。流变挤压铸造合金的力学性能随着浇注温度的降低逐渐提升。合金经过470℃×10 h+500℃×2 h双级固溶后,大部分第二相溶于基体中。120℃×24 h时效处理后,合金的屈服强度为539 MPa,抗拉强度为612 MPa,伸长率为11%。  相似文献   

4.
采用金属型铸造、液态挤压铸造和半固态挤压铸造方法制备了7075铝合金,研究了不同铸造工艺对7075铝合金热导率与力学性能的影响。结果表明,金属型铸造晶粒粗大,产生枝晶偏析降低塑韧性,抗拉强度及伸长率最小,分别为121 MPa和2.78%,但晶粒粗大使热量传导路径宽,对电子散射几率小,电子的平均自由程较长,热导率相对较高,达到了139.67W/(m·K);液态挤压铸造晶粒细化,抗拉强度和伸长率分别为239MPa和5.75%,但晶粒细小且枝晶臂较多,对电子散射程度大,热导率最低,为120.94W/(m·K);半固态挤压铸造的晶粒致密细小且圆整,抗拉强度及伸长率最高分别达到248MPa和7.46%,且热导率为126.07W/(m·K)。  相似文献   

5.
AZ91D镁合金挤压铸造组织与性能的研究   总被引:1,自引:0,他引:1  
采用间接式挤压铸造成形工艺,研究了AZ91D镁合金的挤压铸造组织和力学性能。试验结果表明,由于压力损失和铸件壁厚的影响,导致铸件不同部位的凝固组织和力学性能不同。挤压铸造镁合金组织中初生α-Mg相晶粒平均尺寸为25~30μm左右,抗拉强度和伸长率分别为220MPa和2.5%;不但晶粒尺寸比半固态流变压铸成形的细小,而且其力学性能也更高。  相似文献   

6.
采用包括锻造与重熔的应变诱导熔化激活(SIMA)法制备ZCuSn10铜合金半固态坯料,分析重熔过程中重熔温度和保温时间对ZCuSn10半固态坯料微观组织的影响。结果表明:在900℃保温时,随着保温时间的延长,合金的平均晶粒直径增大,保温时间由5 min延长至50 min时,平均晶粒直径由45.9μm增大至74.7μm;晶粒形状因子随保温时间的延长先减小后增大。保温30 min时,随着保温温度的升高,平均晶粒直径减小,当保温温度由850℃升高至925℃时,平均晶粒直径由72.6μm减小至64.1μm;晶粒形状因子随保温温度的升高而增大。900℃保温30 min获得的半固态组织均匀、球化效果好,平均晶粒尺寸为64.7μm,形状因子为1.65。  相似文献   

7.
用预退火-轧制-重熔应变诱导熔化激活法制备半固态浆料并进行反挤压成形制备铜合金轴套零件,研究预退火时间对铜合金轴套显微组织、硬度、力学性能的影响规律。结果表明:预退火时间对半固态铜合金轴套组织、力学性能、硬度的影响较大。预退火处理后ZCuSn10P1铜合金固相晶粒中Sn含量趋于均匀,700 ℃退火处理改善了ZCuSn10P1铜合金的元素偏析倾向。随着预退火时间增加,半固态铜合金轴套组织的平均晶粒尺寸逐渐增加,形状因子和液相率逐渐减小;轴套布氏硬度降低,抗拉强度和延伸率先增加后降低。综合性能较佳的预退火工艺为700 ℃退火2 h,此时ZCuSn10P1铜合金轴套组织均匀性好、元素分布更均匀,轴套平均晶粒尺寸为:73.06 μm,平均形状因子为0.72,抗拉强度为382 MPa,延伸率为5.5%,平均布氏硬度为127 HBW。  相似文献   

8.
新应变诱导熔化激活法被用来制备高质量的AZ61镁合金半固态坯料。利用光学显微镜和拉伸实验,研究触变挤压成形零件的微观组织与力学性能。结果表明:当施加的压力为784MPa,保压时间为90s,模具温度为450℃时,半固态坯料能够完全充填模具型腔。与半固态等温处理方法相比,新SIMA法制备的半固态坯料触变挤压成形零件的抗拉强度和伸长率分别为300.5MPa和22%;并且成形零件的微观组织晶粒细小、组织均匀。随着等温处理温度的升高和保温时间的延长,成形零件的抗拉强度和伸长率先增加后降低。当挤压道次从1增加至4时,成形零件的抗拉强度和伸长率明显增加。  相似文献   

9.
采用再结晶与重熔法制备了2024铝合金半固态坯料,研究了不同重熔温度和保温时间下坯料的微观组织演变,以及工艺参数对晶粒尺寸和球化程度的影响。通过触变挤压铸造成形试验,分析了不同坯料高度下制件不同位置的力学性能差异。结果表明,坯料的微观组织随着保温时间的延长逐渐演变为挤压态纤维组织的消失、α-Al再结晶晶粒的初生和其球化与长大,且该过程随重熔温度的升高而加快;半固态球状晶粒的尺寸和球化程度均随重熔温度和保温时间的增加而变大;最佳工艺参数为613~621℃时保温20~30min,此时晶粒平均直径约为75μm,圆整度约为0.74。在此工艺参数下,触变成形制件的抗拉强度可达383MPa。  相似文献   

10.
采用应变诱导熔化激活法(SIMA法)制备镁合金半固态坯料,再应用等温挤压成形技术,对复杂形状的镁合金托弹板进行了半固态精密挤压成形试验研究;确定了半固态坯料制备、重熔加热和等温挤压成形等工艺过程中的坯料尺寸、加热温度、加热时间及成形速度等工艺参数,设计制造了等温挤压成形模具.半固态等温挤压成形的镁合金托弹板经固溶和时效热处理后,其抗拉强度ób可达到330 MPa,伸长率δ可达到7%,接近锻件性能指标.  相似文献   

11.
为了研究挤压温度对汽车用Mg-Al-Zn-Ti新型镁合金组织和性能的影响,分别采用5种挤压温度进行了汽车用Mg-AlZn-Ti新型镁合金的挤压试验,并进行了显微组织和力学性能的测试和分析。结果表明:随着挤压温度从230℃增至350℃,合金的平均晶粒尺寸先减小后增大,其抗拉强度和屈服强度均呈现先升高后降低的变化趋势,而断后伸长率在较小变化范围内呈现先降低后升高的变化趋势。挤压温度为320℃时,合金的晶粒尺寸降至最小,其力学性能表现最佳,较230℃挤压时平均晶粒尺寸减小约9μm,抗拉强度和屈服强度分别增大31和32 MPa。因此,汽车用Mg-Al-Zn-Ti新型镁合金的挤压温度优选为320℃。  相似文献   

12.
以Mg_(97)Zn_1Y_2合金为对象,利用超声振动处理制备半固态浆料,研究了半固态流变挤压成形工艺中挤压压力对合金组织及性能的影响。经过超声处理制备的半固态浆料直接浇注得到的合金中α-Mg晶粒尺寸减小,LPSO相也得到细化并均匀分布于基体中。经过挤压成形的合金,LPSO相得到进一步细化,在块状LPSO相上出现条状相,并且随着压力增大,条状相数量增多。合金抗拉强度和伸长率随着压力增大先升高后基本保持不变。最优挤压压力为100 MPa,此时合金的抗拉强度和伸长率分别为234 MPa和11.6%。  相似文献   

13.
通过Magmasoft软件的Ostaward-de Waele粘度模型,对AlSi7Mg连杆的半固态挤压铸造成形过程进行了模拟,并对凝固过程进行了分析.通过数值模拟,获得了浇注温度、模具预热温度、冲头速度对连杆成形质量的影响规律.结果表明,优化的AlSi7Mg连杆半固态挤压铸造成形工艺参数为:浇注温度为576~585℃、模具温度为200~250℃、冲头速度为0.1~0.5m·s-1.在该工艺参数下进行半固态挤压铸造成形,金属浆料流动平稳,凝固时间较短,AlSi7Mg连杆铸件缺陷少.  相似文献   

14.
杨琼  周荣锋  李永坤 《铸造》2023,(1):61-66
分别采用液态挤压铸造和半固态流变挤压铸造成形CuSn10P1合金薄壁轴套,对轴套组织均匀性和拉伸力学性能进行了研究。结果表明,半固态挤压铸造CuSn10P1合金轴套组织中物相尺寸和形态分布均匀性显著提高;半固态铸造组织显著细化和球化,基体相内部锡元素固溶度得到显著提高;δ和Cu3P脆性物相分布于高锡含量的细小α相之间;半固态挤压铸造薄壁轴套的抗拉强度和伸长率较液态挤压铸造轴套分别提高了26%和318%。  相似文献   

15.
采用低温铸造方法制备A356铝合金半固态坯料.在200 t立式油压机上用挤压铸造方法将A356铝合金半固态浆料挤压成件.研究挤压铸造件的微观组织、力学性能,并与液态挤压铸造件进行比较.结果表明,A356铝合金半固态挤压铸造件组织由球形及椭圆形α-Al晶粒和α+Si共晶成分组成,且制件充型完整、无宏观缩孔、组织致密.在比压48.7 MPa,浇注温度575℃,保压时间3s条件下成形的半固态挤压铸造件的抗拉强度、屈服强度、伸长率分别达到278 MPa、225 MPa、13.2%,相比于在比压48.7 MPa,保压时间3s,710℃液态挤压铸造件性能分别提高了8.6%、8.2%、24.5%.A356铝合金半固态挤压铸造成形件具有较高的综合力学性能.  相似文献   

16.
研究了部分重熔温度对触变成形Al-7Si-Mg合金显微组织和力学性能的影响。结果表明,重熔温度对粉末触变成形Al-7Si-Mg组织和力学性能有很大的影响。随着重熔温度升高,半固态坯料中的初生相颗粒形状、尺寸、体积含量的变化,以及随后触变挤压过程产生的缩松、液相偏聚等缺陷是导致力学性能变化的主要原因。当重熔温度为590℃、重熔时间为70 min、模具温度为300℃时,材料的抗拉强度、硬度(HV)和伸长率达到最大值,分别为262.7 MPa、84.48和10.9%。  相似文献   

17.
ADC12铝合金连杆挤压铸造   总被引:1,自引:0,他引:1  
借助万能材料试验机和光学金相显微镜,研究了工艺参数对挤压铸造ADC12铝合金连杆零件力学性能的影响。结果表明,挤压铸造连杆零件具有较高的表面品质和力学性能,其抗拉强度达到371MPa,伸长率达到7.1%。工艺参数对挤压铸造连杆的力学性能有着较大影响,为获得表面品质较好、微观组织致密且力学性能高的连杆零件,适宜的模具预热温度为300℃,加压前停留时间为8s,浇注温度为700℃,比压为322MPa。  相似文献   

18.
研究了浇注温度和固溶温度对挤压铸造Al-6.8Zn-2.5Mg-2.0Cu合金组织和性能的影响。结果表明,与金属型重力铸造相比,挤压铸造可以显著细化合金的微观组织,减少铸件缩松缺陷,从而提高其力学性能。在金属型重力铸造下,初生α-Al相晶粒尺寸随着浇注温度的增加而增大。在挤压力为60MPa时,随浇注温度的增加,α-Al相晶粒尺寸先减小而后增加。在浇注温度为720℃时,凝固组织的二次枝晶间距最小,约为26.3μm,铸件的抗拉强度和伸长率分别为310 MPa和4.0%。铸件经过470℃固溶10h+130℃时效24h热处理后,抗拉强度和伸长率分别达到590MPa和4.7%,获得了良好的强韧化效果。  相似文献   

19.
高强度铝合金代替钢铁零件已成为汽车轻量化的一个重要发展方向。半固态流变挤压铸造生产的铸件,成品率高、力学性能好,有着广阔的发展空间。使用半固态流变挤压铸造工艺生产了汽车铝合金制动泵体,并通过金相实验和拉伸实验研究了浇注温度对铝合金制动泵体流变挤压铸造的影响。结果表明,在600~620℃浇注可获得金相组织呈近球状的制动泵体,且质量良好;随着浇注温度降低,铸件的晶粒尺寸变小,抗拉强度和伸长率增大。  相似文献   

20.
基于ProCast2008软件平台,用其自带的非牛顿流体模型Power Law Cut-Off (PLCO)来建立流动模型,对A356合金连杆半固态挤压铸造铸造的充型和凝固过程进行了数值模拟.研究了浇注温度、冲头速度、模具预热温度等主要工艺参数对连杆半固态挤压铸造铸件成形品质的影响规律,获得了连杆半固态挤压铸造铸造的合理工艺参数:浇注温度为576~583℃、模具温度为200~250℃、冲头速度为0.1-0.5 m,s-1.在该工艺参数下进行成形,金属浆料填充平稳,凝固时间较短,挤压铸件缺陷少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号