首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用激光加工结合构筑纳米结构,并涂覆低表面能物质的方法制备了镁合金超疏水表面。使用光学显微镜和扫描电镜观察表面形貌,接触角测量仪测量超疏水表面的静态接触角,电化学分析方法测试试样在模拟生物体液中的腐蚀性能。结果表明:激光加工参数对超疏水表面形貌和性能具有重要的影响。当加工电流为13 A,点阵间距为50μm时,表面微/纳米结构均匀,静态接触角达到最大值161.7°。超疏水试样的腐蚀电位增加,极化电阻增大,腐蚀电流降低,腐蚀速率降低31%,有效提高了WE43镁合金的耐生物体液腐蚀性能。  相似文献   

2.
镁合金超疏水表面制备技术的研究进展   总被引:1,自引:1,他引:1  
李杰  郭浩正  石文天 《表面技术》2016,45(12):15-22
超疏水表面因其在日常生活及工农业生产等领域有巨大的应用前景而受到科研人员的广泛关注。基于镁及其合金基底超疏水表面的制备研究可以加深对材料特性的认识、扩展材料应用范围和提高材料应用性能而具有重要的意义。介绍了超疏水表面的相关理论基础和超疏水状态下的两类模型及其相互关系,对两类模型下表面微细结构和固体表面化学成分对接触角的影响进行了讨论。从构建超疏水表面的两种途径出发,一是在低表面能物质上构建特殊微细结构,二是在微细结构表面利用低表面能物质进行修饰,着重总结归纳了镁合金基底超疏水表面制备技术的研究进展,并对镁合金超疏水表面的发展进行了展望。  相似文献   

3.
王华  刘艳艳 《表面技术》2023,52(11):1-22, 127
镁合金是一种有发展前途的绿色工程金属材料,但其较差的抗腐蚀性能限制了它的大规模应用。对镁合金表面进行超疏水处理,能够极大地提高镁合金的耐腐蚀性能。当超疏水试样浸泡在腐蚀溶液中时,该结构将在腐蚀介质中形成固-气-液界面层,减少镁合金表面与腐蚀介质之间的接触面积,从而降低腐蚀速度。超疏水表面需要满足微纳米结构和低表面能2个必要条件。可以采用二步法或一步法在镁合金表面制备超疏水表面,详细介绍了在镁合金表面构造微纳米结构的方法,包括激光处理、机加工、化学刻蚀、化学镀、电化学沉积、阳极氧化、微弧氧化、水热合成和喷涂等方法。超疏水表面一旦受到机械损伤,微纳米结构无法满足条件,超疏水表面的“气垫效应”消失,腐蚀介质就会直接与微纳米结构接触,因此需要保证构建的微纳米粗糙结构对镁基体具有良好的保护作用并具有自愈功能。通过制备复合涂层,提高下层微纳米结构的自愈合性能,上层涂层的超疏水性与下层涂层的良好物理屏障能力的协同效应可以改善涂层的长久耐腐蚀性能。综述了在镁合金上制备具有良好耐腐蚀性能的复合超疏水表面的方法,并对镁合金超疏水表面防护技术的研究方向进行了展望。  相似文献   

4.
通过化学刻蚀,以硬脂酸为修饰剂,成功实现AM60镁合金表面的超疏水改性,并采用扫描电镜、接触角仪、电化学工作站等对处理前后的AM60镁合金表面的微观形貌、疏水性能和耐腐蚀性能进行分析。结果表明:AM60镁合金仅经盐酸刻蚀处理后,表现为超亲水性,再经硬脂酸浸泡后才达到疏水的效果;随着硬脂酸浸泡时间的增加,该合金的表面接触角呈现先增加后减小的趋势,在浸泡12 h时,接触角最大为150.18°,滚动角小于10°,此时合金表面具有超疏水性能;同时,相比于未处理的AM60镁合金而言,超疏水改性后样品的腐蚀电流密度降低了88.19%,腐蚀电压提高了19.72%,耐腐蚀性能得到明显改善;而且,超疏水改性还可提高合金对粉尘和水溶液的自清洁性能。  相似文献   

5.
Mg-Mn-Ce镁合金表面超疏水复合膜层的制备及耐腐蚀性能   总被引:2,自引:0,他引:2  
采用微弧氧化技术和有机镀膜技术相结合的复合处理方法实现Mg-Mn-Ce镁合金表面改性,获得超疏水复合膜层,研究微弧氧化膜的表面特征、有机镀膜电化学反应过程、复合膜层的润湿特性和耐腐蚀性能。结果表明:镁合金经微弧氧化处理后由于微弧氧化膜表面呈微纳多孔结构,表现为超亲水特性,其蒸馏水的静态接触角接近0°;在微弧氧化膜上经有机镀膜后,其形成的有机薄膜的静态接触角高达173.3°,表现出优良的超疏水特性。镁合金经微弧氧化处理后具有良好的耐腐蚀性能,经有机镀膜超疏水复合处理后,耐腐蚀性能得到进一步提高。复合膜层在3.5%NaCl溶液中,与基体相比动电位极化腐蚀电流密度减小了3个数量级、而电化学阻抗提高了3个数量级,耐腐蚀性能明显改善。微弧氧化与有机镀膜相结合的复合处理使镁合金表面在实现超亲水-超疏水功能转换的同时显著提高镁合金的耐腐蚀性能。  相似文献   

6.
采用等离子体反应气相沉积和飞秒激光技术分别对低表面能薄膜和方柱形微结构在钛合金上进行了制备。利用扫描电镜(SEM)对样品的表面形貌进行了表征。使用滴定角法对样品的疏水性能进行了评估。同时也对薄膜材料的力学性能进行了检测,获得了最佳工艺,并将上述2种技术复合,在钛合金上制备了仿生超疏水表面。结果表明:采用低表面能薄膜与微结构复合的方法,可以获得超疏水性能优异的钛合金表面,带有Cu薄膜的方柱形微结构水接触角可以达到156°,滚动角可达到8°。  相似文献   

7.
研究了2种化学试剂和2种表面改性剂,通过4种不同的组合方式在镁合金表面制备超疏水膜层的简单方法。先分别使用氯化铜和硫酸锌对镁合金进行化学刻蚀,再通过油酸和硬脂酸对其进行表面修饰。改性以后试样的静态接触角均达到150o以上,滚动角在6.5o左右;且试样的超疏水性能保持稳定,在空气中暴露半年之久后,其接触角依然保持在150o以上,变化幅度非常小。对4种不同的超疏水试样进行电化学测试,比较发现采用氯化铜刻蚀后经过硬脂酸自组装得到的超疏水表面拥有最好的耐腐蚀性,其自腐蚀电位达到–1.11 V,相比于镁合金基体提高了0.33 V,且容抗弧直径是基体的6~7倍。  相似文献   

8.
本文采用等离子体反应气相沉积和飞秒激光技术分别对低表面能薄膜和方柱形微结构在钛合金上进行了制备,采用SEM对样品的表面形貌进行了表征,采用滴定角法对样品的疏水性能进行了评估,同时也对薄膜材料的力学性能进行了检测,获得了最佳工艺,并将上述两种技术复合,在钛合金上制备了仿生超疏水表面,检测结果表明:采用低表面能薄膜与微结构复合的方法,可以获得超疏水性能优异的钛合金表面,带有Cu薄膜的方柱形微结构水接触角可以达到156°,滚动角可达到8°。  相似文献   

9.
MB8镁合金表面超疏水复合膜层的制备与表征   总被引:3,自引:0,他引:3  
利用微弧氧化技术在镁合金表面制备微米级粗糙结构,采用环氧树脂溶液和纳米二氧化硅分散液对该表面进行涂覆处理,得到二氧化硅纳米颗粒均匀分布的粗糙表面,再利用全氟硅烷改性,制备得到具有超疏水性的复合膜层。采用扫描电镜、X射线衍射仪、接触角测量仪、高速摄影系统评价膜层的形貌结构和润湿性。结果表明,微弧氧化层所具有的微米级结构和纳米二氧化硅颗粒组成的微/纳二元粗糙结构对疏水性的提高具有重要作用;复合膜层表面的接触角随二氧化硅分散液浓度的提高呈现先增加后减小趋势,并最终逐渐稳定在150o左右;在二氧化硅分散液浓度为10.0g/L时,复合表面的接触角最大,可达161o,在此条件下获取的复合表面对不同pH值的液滴均具有超疏水性。同时该表面对水滴呈现低黏附特性。  相似文献   

10.
为提高镁合金的耐蚀性,通过微弧氧化和硬脂酸乙醇溶液疏水处理两步法在镁合金表面制备超疏水涂层。考察微弧氧化电压、频率和时间对疏水处理试样接触角的影响。结果表明:随着微弧氧化电压、频率和时间的增加,疏水处理试样的接触角均先增大后减小,分别在350 V、1000 Hz和5 min时获得最大值。最佳超疏水涂层主要由MgO和Mg2Si O4相组成,其表面微孔直径为~900nm,厚度为~6.86μm,接触角高达156.96°。超疏水试样的腐蚀电流密度较基体降低3个数量级,而氢气析出量较基体降低94.77%。  相似文献   

11.
采用自组装方法,在镁基体表面制备了一层超疏水硬脂酸分子层,并采用接触角、扫描电镜、红外光谱、电化学阻抗等测试技术对获得的超疏水层进行了表征和分析.研究表明,经过大约1 h的组装,硬脂酸分子成功的键合到镁基体上,形成了微米-纳米尺寸花瓣状结构的硬脂酸膜,接触角也快速增加至154°.电化学阻抗测试表明,超疏水膜可以提高镁基体的电荷传递电阻,在一定程度上抑制镁的局部腐蚀.  相似文献   

12.
利用电化学沉积技术在碳钢基底上制备了Co-Ni过渡层,再通过双辉等离子表面合金化技术(DGPSA)在过渡层上沉积了Cr涂层,经全氟辛基三氯硅烷(PFTEOS)溶液修饰后,制备出了具有高黏附性的超疏水表面。利用扫描电镜(SEM)、EDS、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、接触角测量仪、电化学测试等方法表征了涂层的形貌、物相组成、润湿性能、粘附性以及耐腐蚀性能,探究了DGPSA技术不同沉积时间对Cr涂层表面形貌和润湿性能的影响。结果表明,在沉积温度为750 ℃,沉积时间30 min 时,制备出了具有微纳米乳突状结构的高黏附性超疏水表面,水滴接触角达到159°,水滴在样品倾斜180°也不发生滚落。电化学测试结果证明制备的超疏水表面具有出色的耐腐蚀性能,对碳钢基底起到了良好的腐蚀防护作用。  相似文献   

13.
总结了近几年金属基超疏水表面的研究成果,介绍了其常见的制备方法一电化学沉积法、阳极氧化法、溶胶一凝胶法、分子自组装法、飞秒激光法、刻蚀法和电解转印法的基本原理,分析了金属基超疏水表面的应用领域和发展前景。  相似文献   

14.
目的解决普通彩色不锈钢表面能高、易被污染的缺点,制备既有装饰效果又具有超疏水自清洁性能的彩色超疏水不锈钢表面。方法通过简单的化学蚀刻法在不锈钢表面建立微纳米尺度的二元微结构,在此基础上进一步由铬酸化学氧化法(INCO法)在不锈钢表面生成微纳米结构彩色膜,经全氟硅烷分子修饰后,最终获得低表面能类荷叶粗糙结构。通过着色曲线、扫描电镜、电子能谱分析仪以及接触角测试等手段研究了化学蚀刻前处理对不锈钢着色性能、微观结构、表面浸润性以及耐腐蚀性能的影响。结果蚀刻处理后,着色过程减缓,所着终点颜色有轻微改变,着色后表面保留了微纳米粗糙结构。由全氟硅烷分子修饰后,获得超疏水彩色不锈钢表面,水接触角为152.6°,其耐腐蚀性能较普通彩色不锈钢更为优异。结论成功制备了耐蚀彩色超疏水不锈钢表面。  相似文献   

15.
本文以Ti6Al4V钛合金为基材,利用微弧氧化和水热法在钛合金表面形成微纳复合多级粗糙结构,进一步通过氟化处理得到具有多级结构的超疏水钛合金表面。利用傅里叶变换红外光谱、能谱仪和场发射扫描电子显微镜等对材料表面结构和组成进行了系统的表征。利用水接触角对材料表面润湿性能进行了分析。因此,通过表面多级粗糙结构的构建以及低表面能处理,能够实现超疏水表面的构建。血小板黏附和溶血率测试结果表明材料表面具有较好的血液相容性。材料表面修饰前后耐腐蚀性能测试表明,超疏水结构能有效地降低材料表面与血液和腐蚀液的接触面积,进而降低材料表面与血细胞的相互作用,同时可以有效提高材料表面的耐腐蚀性能。  相似文献   

16.
先用电化学刻蚀在铝表面加工出超疏水性所需的微纳米粗糙结构,再通过直流阳极氧化在微纳米结构表面形成氧化层,并在高锰酸钾和硫酸的混合溶液中进行电解着色,最后通过氟硅烷修饰降低表面能后即可获得彩色的铝基超疏水表面。对样品表面的微观形貌、化学成分及润湿性进行了表征,结果表明:当电解加工时间为4 min时,铝表面颜色较暗,其超疏水性一般,水滴与表面的接触角达到153.1°,滚动角为1°;当电解加工时间为3 min时,铝表面为黄褐色,有较好的疏水性能,水滴与表面的接触角达到157.2°,滚动角为1°。  相似文献   

17.
在镁合金基体上构建超疏水涂层可提高镁合金的耐腐蚀性能.介绍了镁合金超疏水涂层的研究进展、超疏水涂层的定义及其疏水原理,归纳了在镁合金基体上制备超疏水涂层的主要方法,对刻蚀法、喷涂法、水热合成法、溶液沉积法、电化学沉积法、溶液-凝胶法等方法进行了重点论述,讨论了各种制备方法的优缺点,分析了目前超疏水涂层制备及应用中所存在...  相似文献   

18.
铜及其合金因具有良好的热物理性能,在海洋工程、能源、航空航天、电子器件等领域有广泛的应用前景。制备铜基超疏水表面能够提高铜及其合金在各领域的应用性能,降低铜基金属的损耗,减少资源浪费。因此,超疏水表面在铜及其合金表面的制备和应用方面成为了研究热点。首先简单介绍了超疏水表面的相关理论,主要包括Young氏方程、Wenzel模型和Cassie-Baxter模型。其次,基于制备铜基超疏水表面的2个条件(提高材料表面粗糙度以及降低材料表面能),详细综述了铜基超疏水表面制备方法的研究进展,讨论了自组装、刻蚀、电化学沉积、激光复合加工等方法在制备铜基超疏水表面时存在的优势和主要问题,分析了制备方法对铜基超疏水表面应用性能的影响,列举了铜基超疏水表面在自洁、耐腐蚀、油水分离等方面的应用。最后,指出了铜基超疏水表面未来的发展方向,即通过制备具有自修复功能的超疏水表面或通过改变材料表面微纳米结构,提高铜基超疏水表面的耐磨性和稳定性。除此之外,工艺简单、成本低的铜基超疏水表面制备方法仍具有广阔的应用前景。  相似文献   

19.
为制备超疏水铝合金表面,采用高速电火花切割技术在铝合金表面加工类水稻叶表面的沟槽结构。通过扫描电子显微镜(SEM)观测材料表面形貌,采用接触角测量仪表征水滴在材料表面的疏水性和黏附性。结果表明: 铝合金表面形成了排列规则的微米级沟槽结构,沟槽突起和底部覆盖着微米级凹坑、突起物和纳米级错层等结构。铝合金试样表面的接触角由加工前的61.24°提高至157.71°,最大达165.36°,实现了材料表面亲水向超疏水的转变。提拉法表明加工的铝合金表面具有高黏附特性。将测得的接触角与CassieBaxter模型计算的理论值进行比较,发现试样表面的超疏水性是微米级和纳米级等复合结构共同耦合作用的结果。铝合金试样表面的多尺度结构不仅提高了材料表面的疏水性能,同时也形成了试样表面的高黏附特性。  相似文献   

20.
以选区激光熔化技术制备的金属钛为基体,采用阳极氧化法在SLM-Ti表面微米级球形"模板"上一步制备仿生微纳米复合结构。结果表明,未经紫外光照或高温处理的SLM-TiO_2纳米管在经全氟辛基三乙氧硅烷(1H,1H,2H,2H-perfluorooctyltriethoxysilane molecules, POTS)修饰后即获得了超疏水表面,其静态水接触角约163.8°,滚动角1°。对比分析了阳极氧化后商用纯钛CP-TiO_2和SLM-TiO_2的表面形貌特征和POTS修饰后的静态/动态水接触角。测得POTS修饰后的CP-TiO_2和SLM-TiO_2表面静态水接触角分别约为149.0°和163.8°,即二者均显现出静态超疏水特性。但在有自清洁、防水、防污特性要求时,材料表面的动态接触角才是更为重要的参数,在相同条件下获得的CP-TiO_2表面在倾斜至90°后水滴依然粘附在材料表面,而SLM-TiO_2表面水滴在倾斜不足1°时即快速地(155 ms内)从材料表面滚落。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号