首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
芯片规模封装技术一直倍受高性能、小形状因素解决方案在各类应用中的关注。芯片规模封装与球栅阵列(BGA)封装之间的区别变得不可分辨,已成为“细间距BGA”的同义词。芯片规模封装成本也是业界关注的焦点之一。芯片规模晶圆级封装是提供小形状、高性能和低成本的最快途径。论述了集成无源器件加工、低成本化的晶圆级芯片规模封装技术。  相似文献   

2.
There has been a significant amount of work over the past five years on chip scale packaging. The majority of this work has been an extension of conventional integrated circuit (IC) packaging technology utilizing either wire bonders or tape automated bonding (TAB)-type packaging technology. Handling discrete devices during the IC packaging for these type of chip scale packages (CSPs) has resulted in a relatively high cost for these packages. This paper reports a true wafer level packaging (WLP) technology called the Ultra CSPTM. One advantage of this WLP concept is that it uses standard IC processing technology for the majority of the package manufacturing. This makes the Ultra CSP ideal for both insertion at the end of the wafer fab as well as the facilitation of wafer level test and burn-in options. This is especially true for dynamic random access memory (DRAM) wafers. Wafer level burn-in and wafer level processing can be used for DRAM and other devices as a way to both reduce cost and improve cycle time. Thermal cycling results for Ultra CSPs with a variety of package sizes and input/output (I/O) counts are presented. These test vehicles, assembled to FR-4 boards without underfill, cover a range of footprints typical of flash memory, DRAM and other devices. The electrical and thermal performance characteristics of the Ultra CSP package technology are discussed  相似文献   

3.
A minimal CSP     
A chip scale package (CSP) using wafer scale processing was developed for a line of low cost, small form factor integrated circuits. The package uses polymeric repassivation and electrodeposited solder bumps connected by a unique conductor patterning method. The finished package resembles a common chip resistor. Reliability testing was used to optimize the bump design and the assembly methodologies. Field performance of more than 20 million packages has validated the test results  相似文献   

4.
The ShellCase wafer-level packaging process uses commercial semiconductor wafer processing equipment. Dies are packaged and encapsulated into separate enclosures while still in wafer form. This wafer level chip size package (WLCSP) process encases the die in a solid die-size glass shell. The glass encapsulation prevents the silicon from being exposed and ensures excellent mechanical and environmental protection. A proprietary compliant polymer layer under the bumps provides on board reliability. Bumps are placed on the individual contact pads, are reflowed, and wafer singulation yields finished packaged devices. This WLCSP fully complies with Joint Electron Device Engineering Council (JEDEC) and surface mount technology (SMT) standards. Such chip scale packages (CSP's) measure 300-700 μm in thickness, a crucial factor for use in various size sensitive electronic products  相似文献   

5.
ShellCase公司的圆片级封装技术工艺,采用商用半导体圆片加工设备,把芯片进行封装并包封到分离的腔体中后仍为圆片形式。圆片级芯片尺寸封装(WL-CSP)工艺是在固态芯片尺寸玻璃外壳中装入芯片。玻璃包封防止了硅片的外露,并确保了良好的机械性能及环境保护功能。凸点下面专用的聚合物顺从层提供了板级可靠性。把凸点置于单个接触焊盘上,并进行回流焊,圆片分离形成封装器件成品。WL-CSP封装完全符合JEDEC和SMT标准。这样的芯片规模封装(CSP),其测量厚度为300μm-700μm,这是各种尺寸敏感型电子产品使用的关键因素。  相似文献   

6.
Solder joints are generated using a variety of methods to provide both mechanical and electrical connection for applications such as flip-chip, wafer level packaging, fine pitch, ball-grid array, and chip scale packages. Solder joint shape prediction has been incorporated as a key tool to aid in process development, wafer level and package level design and development, assembly, and reliability enhancement. This work demonstrates the application of an analytical model and the Surface Evolver software in analyzing a variety of solder processing methods and package types. Bump and joint shape prediction was conducted for the design of wafer level bumping, flip-chip assembly, and wafer level packaging. The results from the prediction methodologies are validated with experimentally measured geometries at each level of design.  相似文献   

7.
The four papers in this special section focus on wafer-level packaging. The selected papers cover the state-of-the-art and future development trends for wafer level chip scale packages (WLCSPs) by the leading institutes and industries operating in this field.  相似文献   

8.
The trend to reduce the size of electronic packages and develop increasingly sophisticated electronic devices with more, higher density inputs/outputs (I/Os), leads to the use of area array packages using chip scale packaging (CSP), flip chip (FC), and wafer level packaging (WLP) technologies. Greater attention has been paid to the reliability of solder joints and the assembly yield of the surface mounting process as use of advanced electronic packaging technologies has increased. The solder joint reliability has been observed to be highly dependent on solder joint geometry as well as solder material properties, such that predicting solder reflow shape became a critical issue for the electronic research community. In general, the truncated sphere method, the analytical solution and the energy-based algorithm are the three major methods for solder reflow geometry prediction. This research develops solder joint reliability design guidelines to accurately predict both the solder bump geometry and the standoff height for reflow soldered joints in area array packages. Three simulation methods such as truncated-sphere theory force-balanced analytical solution and energy-based approach for prediction of the solder bump geometry are each examined in detail, and the thermal enhanced BGA (TBGA) and flip chip packages are selected as the benchmark models to compare the simulation and experimental results. The simulation results indicate that all three methods can accurately predict the solder reflow shape in an accurate range  相似文献   

9.
The redistributed chip package (RCP) is a substrate-less embedded chip package that offers a low-cost, high performance, integrated alternative to current wirebond ball grid array (BGA) and flip chip BGA packaging. Devices are encapsulated into panels while routing of signals, power, and ground is built directly on the panel. The RCP panel and signal build up lowers the cost of the package by eliminating wafer bumping and substrates thereby enabling large scale assembly in panel form. The build up provides better routing capabilities and better integration. Also, by eliminating bumping, the device interconnect is inherently Pb-free, and the stress of the package is reduced enabling ultra-low-k device compatibility. The panel is created by attaching the device active side down to a substrate, encapsulating and curing the devices, grinding to desired thickness, and then removing the substrate. Signal, power, and ground planes are created using redistribution-like processing. Multilayer metal RCP packages have passed 40 to 125 C air-to-air thermal cycling and HAST after MSL3/260 preconditioning.  相似文献   

10.
The advent of chip scale packages (CSPs) within the semiconductor community has led to the development of wafer scale assembly (WSA) or wafer level packaging (WLP) manufacturing in order to raise assembly efficiencies and lower operating costs. Texas Instruments (TI) has developed a unique WLP process for forming flip-chip, ball grid array packages. The die inputs and outputs of the TI CSP are connected through solder bumps to a polyimide film interposer. Solder balls on the other side of the interposer complete the electrical connection to a customer’s printed circuit board. A wafer-sized array of interposers designed to match the pattern of dies on a wafer is aligned and reflowed to a bumped wafer. The TI WLP process is completed by singulating the CSPs from the wafer using standard wafer saw equipment.Attachment of the interposer to the die as well as applying the die and board level solder bumps are carried out in wafer form using a new bumping technology called Tacky Dots™. Tacky Dots uses an array of sticky dots formed in a photosensitive coating laminated to a polyimide film for transferring and attaching solder spheres to semiconductor substrates. A populated film containing one solder sphere per Tacky Dot is positioned over the wafer or interposer and lowered until the spheres contact the pads. A reflow process transfers the spheres from the film to the wafer or interposer and the film is removed once the spheres have frozen.This paper illustrates the process steps and custom equipment developed for forming the TI CSP. The strategic use of finite element modeling for optimizing the design of the package is outlined. The paper concludes by summarizing the current package level reliability results.  相似文献   

11.
Reliability aspects are of extreme importance for assembly and packaging, which has become a limiting factor for both cost and performance of electronic systems. On the one hand reliability can be negatively influenced by modern front-end and packaging technology, on the other hand new applications and corresponding field requirements can result in the need for new reliability tests e.g. for mobile devices. Today the three main package trends for mobile devices towards ongoing miniaturization and higher system integration are ball grid array type packages, leadless packages, and wafer level type packages. We present reliability implications based on examples of failures in these modern packaging technologies. We highlight the importance of design for reliability based on results of simulations for a leadless package. For the future it is necessary that test conditions must follow the field requirements to guarantee optimum reliability results.  相似文献   

12.
Reliability of new packaging concepts   总被引:1,自引:0,他引:1  
Today, most of the microelectronics packaging needs are met by semiconductor devices in plastic surface mount (SM) packages. Microelectronics packaging of the future will be either bare chip or chip size/scale packaging (CSP). Of the 45 billion SM packaged ICs to be manufactured in 2000, CSPs will be a small 3.4% but growing at 62% (compound annual growth rate). The use of direct bonded chip-on-board and flip chip (FC) technology for custom solutions may not match the growth of CSPs. The popcorn problem of existing plastic packages has been solved in many ways including the use of hydrophobic composite encapsulants as the best solution and thorough bake-out and storage as the long-standing practical solution. The popcorn problem which was more severe with the smaller and thinner encapsulations of CSPs is also solved with modern hydrophobic materials and new non-paddle package designs. Further, there is good evidence that reliability is not impaired even by delaminations in the bulk of the encapsulations – small delaminations being an inevitable consequence of stress relaxation following transfer moulding. CSP and FC bump joint reliability is safeguarded both by good soldering practice and by effective underfill. High reliabilities are achievable with the range of new packages built from modern materials, with random failure rates down to 10 failure units, infant mortalities controlled to low levels by six sigma manufacturing processes and wearout lifetimes exceeding 100 years even in tropical operation.  相似文献   

13.
Wafer level chip scale packaging (WLCSP) is very promising for the miniature of packaging size, the reduction of manufacturing cost, and the enhancement of the package's performance. However, the long-term board level reliability of integrated circuit (IC) devices using wafer level packaging with large distances from neutral point (DNP) is still not fully solved. This research proposes a novel, alternative WLCSP design for facilitating higher board level reliability. The main feature of the novel WLCSP is basically in its double-pad structure (DPS) design in the interface between solder joints and silicon chip. To characterize the solder joint reliability of the DPS-WLCSP, a three-dimensional (3-D) nonlinear finite element (FE) modeling technique is employed. Based on the FE modeling, the numerical accelerated thermal cycling (ATC) test is performed under the JEDEC temperature cycling specification. The validity of the proposed FE modeling is verified by using an optical measurement method Twyman-Green interferometer. By the derived incremental equivalent plastic strain, the cumulative cycles to failure in solder joints associated with these four WLCSP are assessed based on a modified Coffin-Manson relationship. The modeled fatigue life is compared against the experimental results that adopt a two-parameter Weibull distribution to characterize cycles-to-failure distribution. For comparison, the investigation also involves several existing types of WLCSP, including the conventional (C-WLCSP), the copper post (CP-WLCSP), and the polymer post (PP-WLCSP), and solder joint reliability performance among these WLCSP packages is extensively compared. The results demonstrate that the DPS-WLCSP design not only has potential for enhancing the corresponding solder joint reliability but is also particularly effective in manufacturing process and cost. And finally, some reliability-enhanced design guidelines are provided through parametric design of the DPS.  相似文献   

14.
A large program had been initiated to study the board level reliability of various types of chip scale package (CSP). The results on six different packages are reported here, which cover flex interposer CSP, rigid interposer CSP, wafer level assembly CSP, and lead frame CSP. The packages were assembled on FR4 PCBs of two different thicknesses. Temperature cycling tests from −40°C to +125°C with 15 min dwell time at the extremes were conducted to failure for all the package types. The failure criteria were established based on the pattern of electrical resistance change. The cycles to failure were analyzed using Weibull distribution function for each type of package. Selected packages were tested in the temperature/humidity chamber under 85°C/85%RH for 1000 h. Some assembled packages were tested in vibration condition as well. In all these tests, the electrical resistance of each package under testing was monitored continuously. Test samples were also cross-sectioned and analyzed under a Scanning Electronic Microscope (SEM). Different failure mechanisms were identified for various packages. It was noted that some packages failed at the solder joints while others failed inside the package, which was packaging design and process related.  相似文献   

15.
叠层芯片封装在与单芯片具有的相同的轨迹范围之内,有效地增大了电子器件的功能性, 提高了电子器件的性能。这一技术已成为很多半导体公司所采用的最流行的封装技术。文章简要叙述了叠层芯片封装技术的趋势、圆片减薄技术、丝焊技术及模塑技术。  相似文献   

16.
本文主要论述了现代微电子封装技术中倒装片封装技术和芯片规模封装技术的结构类型,应用产品,倒装片与晶片级规模封装,并阐述了倒装片封装与芯片规模封装的综合比较及其发展前景。  相似文献   

17.
The main aim for the development of small electronic packages is supported by an ongoing development of portable communication devices. Thin silicon dies are believed to improve the device performance as well as its reliability. Additionally, novel packaging techniques such as stacked packaging reduce packaging cost and size, and improve the functionality and reliability. In the case of the stacked packages, wafers are stacked to form a 3D multi-chip package. On the other hand, the electronic market requires novel and efficient numerical designing tools to deal properly with the optimization. The goal of the current work was to design a reliable numerical model of the stacked package and afterwards perform numerical multi-objective optimization in reference to a number of variables, which influence the stacked package reliability.  相似文献   

18.
MEMS中的封装工艺与半导体工艺中的封装具有一定的相似性 ,因此 ,早期MEMS的封装大多借用半导体中现成的工艺。本文首先介绍了封装的主要形式 ,然后着重阐述了晶圆级封装与芯片级封装[1] 。最后给出了一些商业化的实例  相似文献   

19.
Several wafer level chip scale package (WLCSP) technologies have been developed which generate fully packaged and tested chips on the wafer prior to dicing. Many of these technologies are based on simple peripheral pad redistribution technology followed by attachment of 0.3-0.5 mm solder balls. The larger standoff generated by these solder balls result in better reliability for the WLCSP's when underfill is not used than for equivalent flip chip parts. RambusTM RDRAM and integrated passives are two applications that should see wide acceptance of WLCSP packages  相似文献   

20.
芯片制造的电化学处理技术   总被引:2,自引:0,他引:2  
电化学处理技术的性价比优势在芯片制造上是一个范例转移。Cu芯片金属化的双大马士革处理和面阵列芯片封装互连的C4(倒装)技术使电化学技术置于最复杂的制造工艺技术之间。这些工艺技术被集成到用于芯片制造的300mm晶圆处理中。新材料和工艺的持续发展来满足微处理器件不断增加性能和小型化的趋势。电迁移问题和集成超低k电介质材料与Cu镀层的新抛光方法是芯片制造中的一个关键问题。发展一个适用成本低的无铅C4芯片封装互连是微电子工业的主要目标,微电子工业正作努力在几年里市场化无铅产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号