首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A method for bacterial identification has been developed by means of studying the same histological sections through several types of microscopy. With this method, one section was processed and analyzed respectively for light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Sections of gingival biopsies were Gram stained and bacteria tentatively identified by LM. Photographs of the sections were taken and presketched transparent acetate sheets (PTAS) were made from the photos. The same section was later prepared for SEM, areas previously thought to contain bacteria were localized by placing the PTAS onto the SEM monitoring screen. The SEM specimens were subsequently processed for TEM, bacteria were located, and micrographs obtained. The results showed that out of ten diseased gingival biopsies observed under the LM, bacteria were found to be present in all the specimens and were identified as both Gram positive and Gram negative. By transferring the section from LM to SEM, the bacteria could be relocated and their morphotype (cocci, rods, etc.) clearly identified in most of the cases. Since cocci may resemble other biological granular structures under SEM, they require further analysis under TEM for additional positive identification. This study demonstrated that the method described here is a useful tool for assessing the presence and identifying bacteria within the gingival tissues.  相似文献   

2.
A consortium of microorganisms with the capacity to degrade crude oil has been characterized by means of confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The analysis using CLSM shows that Microcoleus chthonoplastes is the dominant organism in the consortium. This cyanobacterium forms long filaments that group together in bundles inside a mucopolysaccharide sheath. Scanning electron microscopy and transmission electron microscopy have allowed us to demonstrate that this cyanobacterium forms a consortium primarily with three morphotypes of the heterotrophic microorganisms found in the Microcoleus chthonoplastes sheath. The optimal growth of Microcoleus consortium was obtained in presence of light and crude oil, and under anaerobic conditions. When grown in agar plate, only one type of colony (green and filamentous) was observed.  相似文献   

3.
Two new observations have been made on human chromatid/chromosome ultrastructure using both scanning and transmission electron microscopy (SEM, TEM). A bipartite, apparently half-chromatid-like structure was observed in whole human chromosomes studied with SEM and in longitudinally sectioned chromosomes analyzed with TEM. In addition, we also observed a zipper-like configuration as the parallel sister chromatids separated likely due to the supercoiled structure of the chromosome and chromatid. It is possible that either or both of these new observations resulted from our (improved) method of preparing the chromosomes for SEM and TEM.  相似文献   

4.
A simplified and standardized technique for close correlation between light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) is described. Perfusion and immersion fixed tissue specimens were embedded in Epon 812 and cut for conventional LM and TEM. The Epon blocks with remaining tissue were thereafter treated with epoxy solvent (ethanol-NaOH solution) for partial epoxy resin removal only (dissolving rate approx 33μm/h). The blocks with partially blotted tissue specimens were then critically point dried and gold coated for SEM. This method, in an easy way, allows repeated observations with LM, TEM and SEM with preserved fine structure and exact correlation. Since the technique is so simple and there is no need for special equipment the method can easily be adopted in all laboratories with basic SEM standards.  相似文献   

5.
Iwano M  Che FS  Takayama S  Fukui K  Isogai A 《Scanning》2003,25(5):257-263
To elucidate the topological positioning of ribosomal RNA genes (rDNA) and nucleolar structure in three dimensions, we examined the localization of rDNA using in situ hybridization (ISH) analysis by scanning electron microscopy (SEM). The rDNA genes within the three-dimensional architecture of nucleoli were detected on chromatin fibers that connect a thick strand-like structure and a protrusion of rDNA into the inner nuclear hole where the nucleolus is formed. This novel use of ISH together with SEM is useful for the analysis of nucleolar structure in detail. Furthermore, rDNA was detected at the periphery of the fibrillar centers (FCs) of the nucleolus using immuno-gold labeling together with transmission electron microscopy (TEM). In situ hybridization with TEM confirmed that rDNA is naked and thus active in the FCs of nucleoli; ISH with SEM confirmed that rDNA is not covered with ribonucleo proteins at the protruding point and is thus inactive. We also show that the distribution pattern of FCs differs from sample to sample. These results indicate that rDNA is transcribed dynamically in a time- and region-specific manner over the course of the cell cycle.  相似文献   

6.
Novel approach in low voltage transmission electron microscopy (TEM) has revealed the presence of SV40 viral like particles in the secretory zymogen granules and in spherical membrane-bound dense bodies of SV40 infected pancreatic cells. The presence of SV40 antigen in these cellular compartments was confirmed by immunocytochemistry of the VP1 antigen. Visualization of the viral particles was only possible by examining ultrathin tissue sections with low-voltage TEM that significantly enhances imaging contrast. Results indicate that following infection of the cell entry and trafficking of the viral particles are present in unique cellular compartments such as ER, dense bodies, and secretory granules.  相似文献   

7.
A combined scanning electron (SEM) and transmission electron microscopy (TEM) investigation was undertaken to gain insight into the complex structural pattern of the atrial compartment and the gas exchange tissue of parabronchial units in quail and town pigeons. The aim was also to depict the changes taking place in the parabronchial unit in the late prehatching and early posthatching periods in quail. The standard SEM and TEM investigation was carried out in 13 mature quail and 8 town pigeons. The developmental study involved embryonic quail (Days 15, 16, 17), newly hatched quail, quail 24 h after hatching, and quail aged 2, 10, 19, and 25 days (3 individuals per group). The luminal relief of the parabronchus is formed by anastomosing interatrial septa delineating the atrial pits, which are thinner and shallower in pigeons. The atrial bottom opens in mature individuals into 3-6 infundibula. The extracellular material represented by trilaminar substance, which does not appear until hatching, veils the surface relief of the parabronchial epithelium, which is consequently hardly accessible to three-dimensional visualization. Only in town pigeons with fewer discontinuous layers of extracellular material was it possible to visualize the surface of the atrial epithelium, that is, of the granular and squamous atrial cells. The SEM analysis has convincingly shown the intricate spatial organization of atria, infundibula, and air and blood capillaries of the gas exchange tissue. The retinacula, that is, parallelly arranged processes of squamous respiratory cells bridging the air-capillary lumina, were evidenced by SEM and TEM. The complex structure of the avian parabronchus has been successfully demonstrated in the present SEM and TEM study.  相似文献   

8.
Cross-linked dextran beads provide an excellent surface for tissue-cultured cell monolayers, and can be processed for transmission (TEM) and scanning (SEM) electron microscopy, as well as light microscopy (LM). Cells are grown to confluency on the surface of the microcarriers, where at any point aliquots can be removed and experimentally treated as desired (e.g. immunocytochemistry) providing a representative sample. Sample preparation for TEM follows standard procedures for any cell monolayer, but infiltration times must be at least doubled to allow penetration of the beads. The polymerized blocks can then be sectioned for TEM or LM with no additional steps required. SEM sample preparation involves attaching the fixed bead/cell suspension to a glass coverslip with poly-1-lysine, dehydration, critical point drying, and coating for conductivity. The fixed and dried sample can also be attached directly to the SEM stub as free beads and subsequently gold coated. These beads provide (1) an increased surface area of cells visible per area of thin section, (2) eliminates the careful orientation required for flat substrate methods of embedding, (3) decreases the amount of sample manipulation in the forms of re-embedding and gluing, and (4) decreases the amount of drying artifact seen as cracking in SEM monolayer preparations.  相似文献   

9.
The performance of the present‐day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low‐kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo‐diode BSE detector in SEM imaging allowed for the registration of single nm‐sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM‐EDS.  相似文献   

10.
The domain structures of Zn3B7O13Cl, Zn3B7O13Br and Zn3B7O13I boracite single crystals were studied by means of polarized light in conjunction with electron microscopy. Single crystals of the three compositions were grown by chemical transport reactions in closed quartz ampoules, at a temperature of 900 °C and were examined by polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For both PLM and SEM, the same as‐grown samples were used without having to resort to metallization of the crystal faces. For TEM the single crystals were crushed and mounted on holey carbon films. Comparative electron microscope images were useful for revealing the domain structure of these ferroelectric/ferroelastic materials previously observed between the crossed polars of an optical microscope. X‐ray diffraction analysis of the pulverized crystals was performed for this triad of halogen boracites containing zinc as a common metal.  相似文献   

11.
Critical point drying (CPD) is a common method of drying biological specimens for scanning electron microscopy (SEM). Drying by evaporation of hexamethyldisilazane (HMDS) has been described as a good alternative. This method, however, is infrequently used. Therefore, we reassessed HMDS drying. Cultured rat hepatic sinusoidal endothelial cells (LEC), possessing fragile fenestrae and sieve plates, were subjected to CPD and HMDS drying and evaluated in the scanning electron microscope, atomic force microscope (AFM) and transmission electron microscope (TEM). We observed no differences between the two methods regarding cellular ultrastructure. In contrast with CPD, HMDS drying takes only a few minutes, less effort, low costs for chemicals and requires no equipment. We conclude that HMDS-dried specimens have equal quality to CPD ones. Furthermore, the method also proved useful for drying whole-mount cells for TEM and AFM.  相似文献   

12.
Morphometric characterization of nanoparticles is crucial to determine their biological effects and to obtain a formulation pattern. Determining the best technique requires knowledge of the particles being analyzed, the intended application of the particles, and the limitations of the techniques being considered. The aim of this article was to present transmission (TEM) and scanning (SEM) electron microscopy protocols for the analysis of two different nanostructures, namely polymeric nanoemulsion and poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles, and to compare these results with conventional dynamic light scattering (DLS) measurements. The mean hydrodynamic diameter, the polydispersity index, and zeta potential of the nanostructures of polymeric nanoemulsion were 370.5 ± 0.8 nm, 0.133 ± 0.01, and ?36.1 ± 0.15 mV, respectively, and for PLGA nanoparticles were 246.79 ± 5.03 nm, 0.096 ± 0.025, and ?4.94 ± 0.86 mV, respectively. TEM analysis of polymeric nanoemulsion revealed a mean diameter of 374 ± 117 nm. SEM analysis showed a mean diameter of 368 ± 69 nm prior to gold coating and 448 ± 70 nm after gold coating. PLGA nanoparticles had a diameter of 131 ± 41.18 nm in TEM and 193 ± 101 nm in SEM. Morphologically, in TEM analysis, the polymeric nanoemulsions were spherical, with variable electron density, very few showing an electron‐dense core and others an electron‐dense surface. PLGA nanoparticles were round, with an electron‐lucent core and electron‐dense surface. In SEM, polymeric nanoemulsions were also spherical with a rough surface, and PLGA nanoparticles were round with a smooth surface. The results show that the “gold standards” for morphometric characterization of polymeric nanoemulsion and PLGA nanoparticles were, respectively, SEM without gold coating and TEM with negative staining. Microsc. Res. Tech. 77:691–696, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Glow discharge is commonly used for cleaning the inside of coating units and for cleaning hard surfaces before carbon or metal evaporation procedures. In this study it has been used to remove the embedding medium to reveal, for scanning electron microscope (SEM) study, the undersurfaces of Balb/c 3T3 fibroblastic cells that have been cultured on Thermanox discs and embedded in LR White resin. Ten to twenty-minute ionization times were found to reveal the largest area of the undersurface without causing damage to the cells. Chemical etching of the resin was also shown to reveal the undersurface of the cells, but caused some damage, preventing successful re-embedding for transmission electron microscopy, and at higher magnifications revealed less detail. A circular impression within the main outline of the cells was observed in many cells, which is considered to reflect the presence of a nucleus. The undersurfaces of most cells, after applying both methods of etching, displayed a number of very short processes. Subsequent transmission electron microscopy of ultrathin sectioned, re-embedded, areas of the gold sputter-coated blocks revealed the depth of ionization that had occurred and confirmed that the specimens observed in SEM were the undersurfaces of cells. This method can be modified to study the attaching surface of any organism to a substratum.  相似文献   

14.
Electron microscopy of squamous cell carcinoma of the head and neck   总被引:2,自引:0,他引:2  
Leek H  Albertsson M 《Scanning》2000,22(5):326-331
Squamous cell carcinoma of the head and neck carries a bad prognosis. In order to achieve cure, the most important thing to attain is local tumour control. The main therapy available is external radiotherapy, which can be supplemented when necessary, with interstitial radiotherapy, chemotherapy and surgery. In this paper we have evaluated specimens, taken before therapy, from 35 patients with squamous cell carcinoma of the head and neck. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were made. With SEM, the parameters analysed were the amount and appearance of microvilli, filaments, and blood vessels. From TEM, scoring was made of the filaments, desmosomes, nuclei, nucleoli, mitochondria, and blood vessels. Scoring of the samples showed a difference between the group with recurrent disease (n = 10, Group 1) and the group with local tumor control (n = 25, Group 2) in regard to both blood vessels and intracellular filaments. No differences of the nuclei, nucleoli, or the mitochondria were observed.  相似文献   

15.
Although nowadays the so-called environmental scanning electron microscopes (ESEMs) allow the observation of the samples without metal or carbon coating, many conventional scanning electron microscopes (SEMs) are still in use. On the other hand, the presence of erythrocytes (red blood cells, RBCs) in a smear is considered a blood confirmation. Such a presence has been previously reported even in Lower Stone Age implements. In previous works, I have reported several studies dealing with cytomorphology of RBCs in bloodstains using scanning electron microscopy with standard specimen preparation procedures, i.e. via coating the samples before SEM analysis. In order to explore the potential of conventional SEM as environmental-like SEM in haemotaphonomical studies, two alkaline (limestone) and two acid (flint) rock fragments were smeared with human blood from a male and a female. The bloodstains obtained in this way were then air dried indoors and stored into a non-hermetic plastic box. Afterwards, the smears and their rock substrates were examined directly without coating, via secondary electrons, using a JEOL JSM-6400 scanning electron microscope. Satisfactory results reveal the capability of a conventional SEM to work in secondary-electron mode as an environmental-like SEM on these kinds of biological and inorganic materials, and probably in many other biological and non-biological samples.  相似文献   

16.
Evaluation of various types of clear plastic support material for light and scanning electron microscopy of the same section was conducted. GelBond was found to be the most satisfactory among seven different types of plastic materials tested. It offers all of the advantages of glass slides for light microscopy while being thin and flexible enough to cut and sputter coat for SEM.  相似文献   

17.
This paper describes the use of sputter coating to prepare detergent-extracted cytoskeletons for observation by scanning (SEM), scanning transmission (STEM), inverted contrast STEM, and transmission (TEM) electron microscopy. Sputtered coats of 1–2 nm of platinum or tungsten provide both an adequate secondary electron signal for SEM and good contrast for STEM and TEM. At the same time, the grain size of the coating is sufficiently fine to be just at (platinum) or below (tungsten) the limit of resolution for SEM and STEM. In TEM, the granular structure of platinum coats is resolved, and platinum decoration artifacts are observed on the surface of structures. The platinum is deposited as small islands with a periodic distribution that may reveal information about the underlying molecular structure. This method produces samples that are similar in appearance to replicas prepared by low-angle rotary shadowing with platinum and carbon. However, the sputter-coating method is easier to use; more widely available to investigators; and compatible with SEM, STEM, and TEM. It may also be combined with immunogold and other labeling methods. While TEM provides the highest resolution images of sputter-coated cytoskeletons, it also damages the specimens owing to heating in the beam. In SEM and STEM cytoskeletons are stable and the resolution is adequate to resolve individual microfilaments. The best single method for visualizing cytoskeletons is inverted contrast STEM, which images both the metal-coated cytoskeletal structures and electron-dense material within the nucleus and cytoplasm as white against a dark background. STEM and TEM were both suitable for visualizing colloidal gold particles in immunolabeled samples.  相似文献   

18.
Corrosion casts provide three dimensional replicas that can be examined readily by scanning electron microscopy (SEM). They are prepared by filling vascular networks with polymerizing plastic and then digesting away the tissue. As based on our studies of ocular vessels, this report describes the vascular anatomy, as well as the artifacts, that are encountered during SEM studies of such preparations.  相似文献   

19.
Schouwenaars R  Cerrud S  Ortiz A 《Scanning》2002,24(4):207-212
Classical etching techniques for revealing cold deformation and partial recrystallisation in metals have been optimised for optical microscopy, which is limited by its resolution. Detailed studies of the mechanisms involved in recovery and recrystallisation during heat treatment are generally made by transmission electron microscopy. The limitation of this technique, with a few exceptions, is its small field of view and the small fraction of the sample available for inspection. The present article departs from the statement that etching, which is a surface alteration technique, must have effects that are detectable by scanning electron microscope (SEM). It was found that carefully adapted polishing and etching procedures allow for substructural investigations by SEM, resulting in various advantages compared with both optical microscopy and TEM.  相似文献   

20.
Bioceramics are being used in experimental bone engineering application in association with bone marrow derived mesenchymal stem cells (BM‐MSCs) as a new therapeutic tool, but their effects on the ultrastructure of BM‐MSCs are yet unknown. In this study we report the morphological features of ovine (o)BM‐MSCs cultured with Skelite, a resorbable bioceramic based on silicon stabilized tricalcium phosphate (SiTCP), able to promote the repair of induced bone defect in sheep model. oBM‐MSCs were isolated from the iliac crest, cultured until they reached near‐confluence and incubated with SiTCP. After 48 hr the monolayers were highly damaged and only few cells adhered to the plastic. Thus, SiTCP was removed, and after washing the cells were cultured until they became confluent. Then, they were trypsinizated and processed for transmission electron microscopy (TEM) and RT‐PCR analysis. RT‐PCR displayed that oBM‐MSCs express typical surface marker for MSCs. TEM revealed the presence of electron‐lucent cells and electron‐dense cells, both expressing the CD90 surface antigen. The prominent feature of electron‐lucent cells was the concentration of cytoplasmic organelles around the nucleus as well as large surface blebs containing glycogen or profiles of endoplasmic reticulum. The dark cells had a multilocular appearance by the presence of peripheral vacuoles. Some dark cells contained endocytic vesicles, lysosomes, and glycogen aggregates. oBM‐MSCs showed different types of specialized interconnections. The comparison with ultrastructural features of untreated oBM‐MSCs suggests the light and dark cells are two distinct cell types which were differently affected by SiTCP bioceramic. Skelite cultured ovine BM‐MSCs display electron‐dense and electron‐lucent cells which are differently affected by this bioceramic. This suggests that they could play a different role in bioceramic based therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号