首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, synchronous control of bearing is employed through a control algorithm for an actively controlled hydrodynamic journal bearing in order to suppress whirl instability and to reduce the unbalance response of a rotor-bearing system. Furthermore, a cavitation algorithm, implementing the Jakobsson–Floberg–Olsson boundary condition, is adopted to predict cavitation regions in a fluid film more accurately than the conventional analysis, which uses the Reynolds condition. The unbalance responses and stability characteristics of the rotor-bearing system are investigated for various control gains and phase differences between the bearing and journal motion. It is shown that the unbalance responses of the system can be greatly decreased by synchronous control of the bearing. There is an optimum phase difference, which gives the minimum unbalance response of the system at given operating conditions. It is also found that the stability threshold of the system can be greatly increased by synchronous control of the journal bearing.  相似文献   

2.
The purpose of this paper is to present the two-dimensional linear stability analysis considering the fluid flow in both full film and cavitation regions for a plain cylindrical journal bearing. The Lund's infinitesimal perturbation procedure is applied to Elrod's universal equation for evaluation of unsteady pressure gradients. Based on JFO theory, the pressure distribution, film rupture, and reformation boundaries can be obtained using Elrod's universal equation, for a given operating position of the journal. In this work, it is assumed that for infinitesimal perturbation of a journal about the equilibrium position, the film rupture and film reformation boundaries are the same as those obtained for steady state. However, the unsteady pressure gradients in the full film region are evaluated taking into consideration the perturbed flow parameters in the cavitation region, i.e., at both rupture and reformation boundaries. The linearized stiffness and damping coefficients, whirl frequency ratio, and threshold speed for various values of eccentricity and L/D ratios are obtained for a plain cylindrical journal bearing with an axial groove along the load line. Measured data of dynamic coefficients for a 120° partial arc bearing are chosen for comparison with this work. Results show good agreement between the theoretical and experimental results.  相似文献   

3.
A cavitation algorithm for arbitrary lubricant compressibility   总被引:1,自引:0,他引:1  
A general cavitation algorithm that accommodates for an arbitrary density–pressure relation is presented. It is now possible to model the compressibility of the lubricant in such a way that the density–pressure relation is realistic throughout the contact. The algorithm preserves mass continuity for cavitation caused by bearing geometry and surface topography. It is a commonly accepted physical assumption that the contribution of the pressure driven flow is negligible in the cavitated region. This phenomenon is adopted in the present algorithm, which is similar to that of Elrod, and is modeled by a switch function that terminates the pressure gradient at the cavitation regions. Results with this algorithm for different density–pressure relations are presented and discussed. The effects of inlet conditions, such as surface roughness and starvation, on the load carrying capacity of the contact are analyzed.  相似文献   

4.
Transient EHL analysis of an elastomeric hydraulic seal   总被引:1,自引:0,他引:1  
Recent steady-state numerical analyses of reciprocating hydraulic rod seals have revealed many important details about the operation of such seals, including the fact that they generally operate with mixed lubrication in the sealing interface. However, these seals frequently operate under transient conditions, with the rod speed and sealed pressure undergoing cyclic variations with time. In the present study, a transient numerical model has been developed to take account of the varying rod speed. The model consists of a fluid mechanics analysis of the lubricating film of hydraulic fluid, a contact mechanics analysis of the contacting asperities on the seal lip and a structural analysis of the seal deformations. The fluid mechanics analysis consists of a finite volume solution of the Reynolds equation using a mass-conserving algorithm, which accounts for possible cavitation. The contact mechanics analysis utilizes the Greenwood–Williamson model. The structural analysis consists of a finite element analysis. Typical results are presented for an injection molding application. Of greatest importance is the net leakage per cycle. Also presented are the cyclic histories of such performance characteristics as the lubricating film thickness, contact pressure and fluid pressure distributions, the friction force on the rod and the instantaneous flow rate.  相似文献   

5.
Alicja Krella  Andrzej Czy niewski 《Wear》2006,260(11-12):1324-1332
Results of investigation on cavitation-erosion resistance of Cr–N coating deposited on stainless steel X6CrNiTi18-10 (1H18N9T) by means of the cathodic-arc method are presented. The evaluation of Cr–N coating resistance to cavitation erosion is based on the investigation performed in a cavitation tunnel with a slot cavitator and tap water as a medium. The investigation was performed at variable-cavitation intensity and the estimated cavitation resistance parameters of coatings were the incubation period of damage and the instantaneous erosion rate after exposure of specified duration. It has been confirmed that the incubation period of the Cr–N coating damage is approximately 50% longer than that of the uncoated X6CrNiTi18-10 steel, and the instantaneous erosion rate after exposure of specified duration is comparable in both cases. The scanning microscope analysis indicates that the damage of Cr–N coating is due mainly to its delamination, while the erosion of deeper parts of the coating is of minor importance. The character of the coating and substrate damage in multiple locations indicates that the hard coating microparticles torn-off during the cavitation bubbles implosion hit against the coating and the revealed areas of substrate. As a result, the coating and especially the substrate of relatively low hardness are subject to cavitation erosion and to solid particle erosion with the hard torn-off microparticles of coating. The results of the investigation and the analysis indicate that the factors mainly responsible for a long incubation period and low cavitation erosion rate of the steel substrate/hard coating systems are the gained high hardness of substrate and high level of coating adhesion.  相似文献   

6.

This research presents an advanced squeeze film damper model that integrates piston ring seal geometry, fluid inertia, and film cavitation to study their combined features. The configuration of the piston ring seal is inspected, and different sealing scenarios are discussed. The flow rate in the seal arrangement is determined on the basis of the pressure gradient according to thin film theory. Moreover, the governing equation for the flow in the film land that considers fluid inertia is solved using the linear complementarity problem method to address the cavitation phenomenon. Validation is performed by comparing the model prediction with long bearing and short bearing models under different seal dimensions. Results show that an oversized gap in the seal grooves and a large frictional coefficient may lock the piston ring seal in the seal groove and thus reduce seal efficiency.

  相似文献   

7.
为探索微观表面形貌对液膜密封空化的影响,基于满足质量守恒的JFO空化模型及坐标变换,建立考虑微观表面形貌的双坝区螺旋槽液膜密封数学模型;采用有限体积法离散求解控制方程,综合分析表面粗糙度、周向波度和径向锥度对螺旋槽液膜密封空化发生的影响规律。结果表明:相比而言,密封面计入微观表面形貌后,摩擦副液膜中空穴区发生位置分散且形状不规则;以空化面积比为判据,较大表面粗糙度对液膜空化促生虽起到积极作用,但数据较小,可忽略不计;锥度对液膜中空穴促生和抑制影响有限,波幅的增加显著促进液膜中空穴的发生;高频波数时,正锥度有利于降低液膜空化面积比,抑制空穴。  相似文献   

8.
Cavitation erosion testing machine for low-temperature melting alloy liquid was developed by using a vibratory apparatus. The erosion tests of SUS304 were carried out in three kinds of lead–bismuth and deionized water. We defined a relative temperature as the percentage between freezing and boiling points. At relative temperature at 14 °C, the erosion rate is 10–12 times in various lead–bismuth alloys, and 2–5 times in sodium, as compared with that in deionized water. When SUS304 was exposed to a cavitation in PbBi, the surface was work hardened 20% harder compared with original surface. In deionized water, SUS304 was work hardened by 5%. Therefore, we can conclude that larger collapse pressure can be estimated to act on the specimen surface in lead–bismuth, as compared with that in water.We discussed the effect of hydrodynamic properties on cavitation erosion in a flowing system. It is considered that the erosion rate in sodium is in proportion to 1st to 6th power of flow velocity similarly to that in mercury. The incipient cavitation number is approximately unity irrespective of test liquids. Furthermore, the relation between MDER and cavitation number is expressed as power low of function with an exponent of 2.5.  相似文献   

9.
本文详细考察了进动挤压油膜轴承中的气穴特征,发现考尔和哈汉思等人在1957年所作的关于这种轴承气穴形式的结论是不真实的。本文建立了这种轴承中油气二相流润滑膜的物理模型和基本方程,进行了有关分析计算。  相似文献   

10.
Identification of nonlinear dynamic coefficients in plain journal bearings   总被引:5,自引:0,他引:5  
This work proposes a framework to the numerical identification of nonlinear fluid film bearing parameters from large journal orbital motion (20–60% of the bearing clearance). Nonlinear coefficients are defined by a third order Taylor expansion of bearing reaction forces and are evaluated through a least mean square in time domain technique. The journal response is obtained from a computational fluid dynamic (CFD) model of a plain journal bearing on high dynamic loading conditions. The model considers fluid–structure interaction between the fluid flow and the journal. The case in study considers a laboratory test rig. Results indicate that nonlinear coefficients have an important effect on stiffness and damping. It was found a change on nonlinear behavior occurred when the Oil Whirl phenomenon starts, which it is not seen in classical linear models.  相似文献   

11.
The wear behavior of as-cast and hot extruded Al–Si–Pb alloys were investigated under dry conditions using a pin-on-disc type wear testing machine. The results show that the microstructure and mechanical properties can be greatly improved and porosity can be significantly decreased by hot extrusion. These factors contribute to great increase in wear resistance of hot extruded Al–Si–Pb alloys. Optical observation and X-ray photoelectron spectroscopy (XPS) analysis reveal the almost constant wear rate at mediate load levels. Better resistance to seizure for Al–Si–Pb alloys with more than 15 wt% lead are due to a film of lubricant covering almost the entire worn surface. This film is a mixture of different constituents containing Al, Fe, Si, O and Pb.  相似文献   

12.
Scharf  T.W.  Singer  I.L. 《Tribology Letters》2003,14(2):137-145
A method to quantify transfer film thickness of diamond-like nanocomposite (DLN) coatings during sliding is presented. Previously, we showed that as the transfer film thickened then thinned, Raman carbon spectra evolved from that of the coating, to the transfer film, then back again to the coating. In this paper, the transfer film thickness is quantified using Raman spectra with stylus profilometry and a light-scattering model based on Beer's Law. Non-linear least-square fits of Raman intensity versus thickness data of several transfer films gave an optical mean free path of 500 nm. The model was also used to quantify transfer film thickness between 10 and 960 nm from the Raman intensity (at a given frequency) of the combined coating–transfer film spectrum. Finally, the model was applied to in situ spectra during sliding to establish a thickness at which a transfer film wore through causing a rise in friction.  相似文献   

13.
High-performance base fluids for environmentally adapted lubricants   总被引:2,自引:0,他引:2  
Future lubricants have to be more environmentally adapted, have a higher level of performance, and lower total life cycle cost (LCC) than presently used lubricants. To be able to formulate those lubricants, the properties of the base fluids have to be well known. Base fluid properties that influence the formulated lubricant performance could be divided into three different groups. These groups are: physical, chemical, and film formation properties. In this study, properties from all of these groups are investigated to improve the understanding on thier influence on base fluid overall performance.There are more or less environmentally adapted base fluids available for formulation of lubricants. They could be divided into different groups, mineral, semi–synthetic, and synthetic fluids. Synthetic fluids could be of different types: polyalpha olefins (PAO), synthetic ester, polyglycols, and others. The most interesting group for formulation of environmentally adapted lubricants are the synthetic esters. In this study, the properties for a large number of environmentally adapted ester base fluids are studied in detail. The tested properties relate to the macroscopic/molecular behavior and include: viscosity–temperature—pressure effects, η(p,T), thermal conductivity, λ(p,T), and heat capacity per unit volume, ρcp(p,T). The film formation capability in elasto-hydrodynamic contacts is also studied. Different connections between the molecular structure and the performance of the fluids are discussed. As an example, it is found that a large number of carboxylate groups in the ester molecule improve the thermal properties, and thereby a thicker lubricating film could be maintained in highly loaded, high-slip contacts.  相似文献   

14.
Numerical analysis of TEHL line contact problem under reciprocating motion   总被引:7,自引:0,他引:7  
This paper presents a full numerical analysis to simulate the thermal elastohydrodynamic lubrication (TEHL) of steel–steel line contact problem under reciprocating motion. The equation system is solved using multigrid techniques. General tribological behaviors of TEHL under reciprocating motion are explained. Comparison between thermal and isothermal results reveals the importance of thermal effect in prediction of the traction coefficient and film thickness. The influences of frequency, stroke length, and applied load on the variations of film thickness, pressure and traction coefficient during one working cycle are discussed. Furthermore, the influence of slide–roll ratio on tribo-characteristics of oil film under same entraining velocity is revealed.  相似文献   

15.
This paper has studied influences of fluid inertia on fluid velocity profiles and provided an axial inertia velocity profile for short squeeze film damper bearings (SFDs) using as a starting point a simplified Navier–Stokes equation. The velocity profile reasonably represents influences of fluid inertia on fluid flow. From the inertia velocity profile, present work develops new theoretical models for fluid forces in cylindrical short SFDs. Published experimental work confirms that the new models for fluid forces are better than traditional short-SFD theory, especially for tangential force. The new models show that the damping coefficient for 2π film is related to fluid inertia.  相似文献   

16.
Due to the renewed interest in hard-on-hard hip replacement, especially metal-on-metal (MoM) or metal-on-ceramic (MoC) joints, issues relating to their long-term durability need to be addressed. Their effects on the operating environment (human body) and how the body fluid affects the implant materials are the primary concern. For widely used metallic implant materials, such as cobalt–chromium–molybdenum (CoCrMo) alloys, released ions due to electrochemical (corrosion) processes and mechanical-enhanced electrochemical (corrosion-wear/tribocorrosion) processes may cause biological reactions in the human hosts. Proteins are a primary constituent of the synovial fluid in human joints with other organic components such as hyaluronic acid and lubricin, and, although numerous tribological studies in protein-containing fluids have been conducted, there is still a need to fully understand the role of proteins and adsorbed-protein layers in wear, corrosion and tribocorrosion processes in artificial joints.In this study, bovine calf serum was used to simulate the body fluid, and a model solution of 0.36% NaCl solution was employed to isolate the influence of organic species (such as proteins, amino acids etc.). Wrought high carbon cobalt–chromium–molybdenum alloy (HC CoCrMo), Wrought low carbon cobalt–chromium–molybdenum alloy (LC CoCrMo) and stainless steel UNS S31603 (316 L) were included in the study and their corrosion, tribology and tribocorrosion behaviour were assessed by integration of gravimetric analysis and electrochemical measurements. Surface analysis (chemical and topographical) was carried out to fully understand the surface/organic species interactions.The constituents of bovine serum have been shown to have a great influence on the corrosion behaviour of all materials studied here—the mechanism of their action being to accelerate ion release and passive film breakdown in static conditions. In tribological contacts, biofilm can play a role in forming an effective lubricating film that reduces friction. For HC CoCrMo, reactions at the surface in the contact zone form a very complex nanostructured layer which comprises wear debris, biofilm and reaction products and the process also changes the nature of the passive film formation. The film reduces the material loss and hence has a protective nature. Organic species (proteins, etc.) were also shown to enhance corrosion-related damage on all materials.  相似文献   

17.
The mechanical properties of thin films are extracted from the measured load displacement relation in a contact test conducted using micro or nano instruments. At this micro or nano force scale, the adhesion and friction operating between the test tip and thin film surface will contribute to the deformation. The well established Johnson–Kendall–Roberts (JKR) theory provided a relationship between the normal load and elastic central displacement for the adhesion contact. But because of its semi-infinite half-space hypothesis, the standard JKR theory is not applicable to thin film contact problem. Experimental verification demonstrates the numerical version of JKR theory is suitable for compliant thin film adhesion analysis, but it does not include the friction effect. In this paper, the load–displacement relation of totally bonded friction contact with adhesion is studied and compared with that of frictionless case. The practical thin film contact will lie in these two limits. The effect of friction to load and displacement seems very small except for the transition range from film to substrate response. Empirical expressions for the contact compliance are obtained from the detailed finite element study.  相似文献   

18.
激光加工多孔端面机械密封中空化边界条件的比较   总被引:4,自引:1,他引:3  
建立了激光加工多孔端面机械密封(LST-MS)的动压分析理论模型,在Half-Sommerfeld、Reynolds和JFO等3种不同空化边界条件下应用有限元法求解了端面流体膜压的Reynolds控制方程,研究了微孔结构参数及操作条件对端面无量纲平均动压的影响规律,并对上述空化算法的计算速度和精度进行了比较。结果表明,在一般情况下,采用Reynolds和JFO空化边界条件具有十分接近的预测精度,但是前者的预测速度明显优于后者,而采用Half-Sommerfeld空化边界条件预测精度则很差,建议此时采用Reynolds空化边界条件;对于不能采用Reynolds空化边界条件的情况,则建议采用JFO空化边界条件进行预测分析。  相似文献   

19.
Based on energy and mass balances in conjunction with the classical Reynolds equation in the film region, expressions for cavitation phenomenon are developed. They determine the circumferential location angle where cavitation might start, and the potential number of bifurcating fluid streamer surfaces (boundaries between gas-liquid flow) can be estimated. The expressions depend on the journal angular velocity, equilibrium eccentricity ratio, and bearing and fluid characteristics; they strongly influence cavitation and have not been considered in previous studies. Conditions under which the cavitation phenomenon does not occur are also given. Finally, a comparison to previous research results showing a very close agreement is presented.  相似文献   

20.
The dynamic friction and wear behaviors are investigated in reciprocating friction drive system using a 0.45% carbon steel pair. The effects of various operating parameters on the traction force, stick and slip time, and friction modes are examined under the lubricated contacts. Moreover, the critical operating conditions in classifying three friction modes are also established. Results show that the fluid friction induced by the shearing of lubricant dominates the variation of traction force and produces the positive slope γ at the first period of slip in the traction force–relative sliding velocity curve. The γ value decreases at higher driver speed during stick-slip motion due to the thicker fluid film and shear thinning effect. The γ value increases due to the asperity interactions as the friction region is transferred from stick-slip to sticking with normal load from 196 to 980 N. Furthermore, it is also found that the static friction force is independent of stick time for the tangential loading rate ranged from 1.12 to 16.8 s−1. The transition region produces the severest wear under the different driver speeds, but the wear is insensitive to the friction regions and the severe wear only occurs at higher normal load due to the action of Hertzian contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号