首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have reported recently that the dual specificity mitogen-activated protein kinase phosphatase-3 (MKP-3) elicits highly selective inactivation of the extracellular signal-regulated kinase (ERK) class of mitogen-activated protein (MAP) kinases (Muda, M., Theodosiou, A., Rodrigues, N., Boschert, U., Camps, M., Gillieron, C., Davies, K., Ashworth, A., and Arkinstall, S. (1996) J. Biol. Chem. 271, 27205-27208). We now show that MKP-3 enzymatic specificity is paralleled by tight binding to both ERK1 and ERK2 while, in contrast, little or no interaction with either c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK) or p38 MAP kinases was detected. Further study revealed that the N-terminal noncatalytic domain of MKP-3 (MKP-3DeltaC) binds both ERK1 and ERK2, while the C-terminal MKP-3 catalytic core (MKP-3DeltaN) fails to precipitate either of these MAP kinases. A chimera consisting of the N-terminal half of MKP-3 with the C-terminal catalytic core of M3-6 also bound tightly to ERK1 but not to JNK3/SAPKbeta. Consistent with a role for N-terminal binding in determining MKP-3 specificity, at least 10-fold higher concentrations of purified MKP-3DeltaN than full-length MKP-3 is required to inhibit ERK2 activity. In contrast, both MKP-3DeltaN and full-length MKP-3 inactivate JNK/SAPK and p38 MAP kinases at similarly high concentrations. Also, a chimera of the M3-6 N terminus with the MKP-3 catalytic core which fails to bind ERK elicits non selective inactivation of ERK1 and JNK3/SAPKbeta. Together, these observations suggest that the physiological specificity of MKP-3 for inactivation of ERK family MAP kinases reflects tight substrate binding by its N-terminal domain.  相似文献   

3.
We evaluated the possibility that distinct proteolytic pathways contribute to the down-regulation of a novel (epsilon) or conventional (alpha) isoform of protein kinase C (PKC) in nonimmortalized human fibroblasts. Inhibitors of calpains and other cysteine proteinases, vesicle trafficking, or lysosomal proteolysis did not affect the down-regulation of PKC-alpha or -epsilon produced by bryostatin 1 (Bryo). Lactacystin (Lacta) and certain terminal aldehyde tripeptides or tetrapeptides, which selectively inhibit the proteasome, preserved substantial PKC-alpha and -epsilon protein from down-regulation by Bryo or phorbol-12-myristate-13-acetate. Lacta preserved active kinase in vivo, as shown by the retention of Bryo-induced autophosphorylated PKC-alpha. Concomitant with down-regulation, Bryo produced PKC-alpha and -epsilon species that were larger than the native proteins (80 and 90 kDa, respectively). Western blot analysis showed that the larger PKC-alpha species were ubiquitinylated. Treatment with Bryo plus Lacta synergistically increased multiubiquitinylated PKC-alpha, as expected if Bryo induces ubiquitinylation of PKC-alpha and Lacta blocks its degradation. Bryo also produced a 76-kDa, nonphosphorylated form of PKC-alpha and an 86-kDa form of PKC-epsilon. Phosphatase inhibitors decreased production of 76- and 86-kDa PKC-alpha and -epsilon by Bryo and preserved 80- and 90-kDa PKC-alpha and -epsilon, respectively. Our results suggest that the down-modulation of PKC-alpha and -epsilon occurs principally via the ubiquitin/ proteasome pathway. Dephosphorylation seems to predispose PKC to ubiquitinylation.  相似文献   

4.
The mitogen-activated protein (MAP) kinase family includes extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38/RK/CSBP (p38) as structurally and functionally distinct enzyme classes. Here we describe two new dual specificity phosphatases of the CL100/MKP-1 family that are selective for inactivating ERK or JNK/SAPK and p38 MAP kinases when expressed in COS-7 cells. M3/6 is the first phosphatase of this family to display highly specific inactivation of JNK/SAPK and p38 MAP kinases. Although stress-induced activation of p54 SAPKbeta, p46 SAPKgamma (JNK1) or p38 MAP kinases is abolished upon co-transfection with increasing amounts of M3/6 plasmid, epidermal growth factor-stimulated ERK1 is remarkably insensitive even to the highest levels of M3/6 expression obtained. In contrast to M3/6, the dual specificity phosphatase MKP-3 is selective for inactivation of ERK family MAP kinases. Low level expression of MKP-3 blocks totally epidermal growth factor-stimulated ERK1, whereas stress-induced activation of p54 SAPKbeta and p38 MAP kinases is inhibited only partially under identical conditions. Selective regulation by M3/6 and MKP-3 was also observed upon chronic MAP kinase activation by constitutive p21(ras) GTPases. Hence, although M3/6 expression effectively blocked p54 SAPKbeta activation by p21(rac) (G12V), ERK1 activated by p21(ras) (G12V) was insensitive to this phosphatase. ERK1 activation by oncogenic p21(ras) was, however, blocked totally by co-expression of MKP-3. This is the first report demonstrating reciprocally selective inhibition of different MAP kinases by two distinct dual specificity phosphatases.  相似文献   

5.
Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.  相似文献   

6.
BACKGROUND: FRTL-5 thyroid cells are a cell line extensively used for the investigation of thyroid functions. Activation of alpha-1 adrenergic receptors stimulates both arachidonic acid (AA) release and cytosolic Ca2+ increase in this cell line. Cytosolic Ca2+ and arachidonic acid are known to be important second messengers regulating a variety of thyroid functions. The generation of these messengers is regulated primarily by two different types of phospholipases, phospholipase C (PLC) and phospholipase A2 (PLA2). METHODS: Norepinephrine (NE, 10 mumol/L) was used as an alpha-1 adrenergic activator, and cytosolic-free Ca2+ concentration ([Ca2+]i) was determined using the fluorescent dye indo-1. Arachidonic acid release was measured as an indicator of PLA2 activation, and protein kinase C (PKC) activity determination and isoforms identification were performed using commercial kits. RESULTS: Norepinephrine increased [Ca2+]i and AA release. Prevention of NE-induced cytosolic Ca2+ influx, either by removal of extracellular Ca2+ or by use of Ca2+ channel blockers, NiCl2 or CoCl2, inhibited AA generation entirely. Inhibition of NE-induced increase in [Ca2+]i by the Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), also significantly suppressed NE-induced AA release. Inhibition of PKC activity by PKC inhibitors (H-7 or staurosporine) or downregulation induced by prolonged treatment with phorbol 12-myristate 13-acetate (PMA) or thyleametoxin (TX) significantly blocked the NE-induced AA release, which indicates PKC is involved in mediating NE-induced AA release. Protein kinase C activity measurement indicated that NE induced an activation of PKC in 5 minutes. To further characterize the role of PKC or Ca2+ in regulation of AA release, we identified PKC isoforms by immunoblotting with specific antibodies against 8 different Protein kinase C isoforms. PKC-alpha, -beta I, -beta II, -gamma, delta, -epsilon, -zeta, and -eta isoforms were identified. Norepinephrine induced translocation of PKC-alpha, -beta I, -beta II, -gamma, -delta, and -epsilon isoforms but not -zeta and -eta from cytosol to membrane. Chelation of intracellular Ca2+, prevention of Ca2+ influx, or prolonged treatment with thymeleatoxin (TX) completely blocked the NE-induced translocation of PKC-alpha. CONCLUSIONS: These results, taken together with data obtained from AA experiments, suggest that PKC plays a critical role in alpha-1 adrenergic receptor mediated PLA2 activation and subsequent AA release. Extracellular Ca2+ influx is a prerequisite for both PKC-alpha translocation and AA release. Whether Ca2+ acts directly upon the PLA2, or via PKC-alpha, to regulate AA generation is an intriguing question that remains to be clarified.  相似文献   

7.
MAP kinase phosphatase-3 (MKP-3) dephosphorylates phosphotyrosine and phosphothreonine and inactivates selectively ERK family mitogen-activated protein (MAP) kinases. MKP-3 was activated by direct binding to purified ERK2. Activation was independent of protein kinase activity and required binding of ERK2 to the noncatalytic amino-terminus of MKP-3. Neither the gain-of-function Sevenmaker ERK2 mutant D319N nor c-Jun amino-terminal kinase-stress-activated protein kinase (JNK/SAPK) or p38 MAP kinases bound MKP-3 or caused its catalytic activation. These kinases were also resistant to enzymatic inactivation by MKP-3. Another homologous but nonselective phosphatase, MKP-4, bound and was activated by ERK2, JNK/SAPK, and p38 MAP kinases. Catalytic activation of MAP kinase phosphatases through substrate binding may regulate MAP kinase activation by a large number of receptor systems.  相似文献   

8.
Shp-2 is a widely expressed cytoplasmic tyrosine phosphatase with two SH2 domains. A targeted mutant allele of the Shp-2 gene with a deletion of 65 amino acids in the NH2-terminal SH2 domain was created that leads to embryonic lethality at mid-gestation in homozygous mutant mice. To define the Shp-2 function in cell signaling, we have established mutant fibroblast cell lines, and have examined the effect of the Shp-2 mutation on extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) mitogen-activated protein (MAP) kinase pathways. Insulin-like growth factor (IGF)-I-induced ERK activation was completely abolished, while ERK activity upon platelet-derived growth factor and epidermal growth factor stimulation was significantly reduced and shortened in mutant cells. Stimulation of ERK by phorbol 12-myristate 13-acetate was not affected in mutant cells, but the phorbol 12-myristate 13-acetate-induced ERK activity decayed much faster compared with that in wild-type cells. In contrast, JNK activation upon heat shock was significantly enhanced in Shp-2 mutant cells. Based on these results, we conclude that Shp-2 plays differential positive regulatory roles in various mitogenic signaling pathways leading to ERK activation, and that Shp-2 is a negative effector in JNK activation by cellular stress. This is the first evidence that a tyrosine phosphatase has opposite effects in mediating the activation of ERK and JNK MAP kinases.  相似文献   

9.
Cultured macrophages exhibit spreading in response to external stimuli. It is relevant to in vivo morphologic changes of macrophages during extravasation, migration, and differentiation. The present study was performed to elucidate molecular mechanisms that regulate spreading of macrophages. Redox is a crucial factor that modulates a wide range of cell function. We found that macrophages undergo spreading in response to oxidant stress caused by hydrogen peroxide or an oxidant generating agent menadione. To identify signaling pathways involved, a role of mitogen-activated protein (MAP) kinases was investigated. Western blot analysis showed that treatment of macrophages with menadione rapidly induced phosphorylation of extracellular signal-regulated kinases (ERK1, ERK2) and p38 MAP kinase, but not c-Jun N-terminal kinase (JNK). Pharmacologic inhibition of either ERK or p38 activation blunted the macrophage spreading. Similarly, transfection with dominant-negative mutants of ERKs or a mutant p38 significantly suppressed the oxidant-triggered spreading. ERKs and p38 are known to activate serum response element (SRE) via phosphorylation of the ternary complex factor Elk-1. To further identify downstream events, we focused on a role of SRE. Stimulation of macrophages with menadione induced activation of SRE. Intervention in the SRE activation by a dominant-negative mutant of Elk-1 inhibited the menadione-induced spreading. These results suggest that oxygen radical metabolites, the well-known mediators for tissue injury, incite spreading of macrophages via the MAP kinase-SRE signaling pathways.  相似文献   

10.
Formation of a complex of the nucleotide exchange factor Sos, the SH2 and SH3 containing adaptor protein Grb2/Sem-5 and tyrosine phosphorylated EGF receptor and Shc has been implicated in the activation of Ras by epidermal growth factor (EGF) in fibroblasts: related mechanisms for activation of Ras operate in other cell types. An increase in the apparent molecular weight of Sos has been reported to occur after several minutes of receptor stimulation due to phosphorylation by mitogen-activated protein (MAP) kinases. We report here that treatment of human peripheral blood T lymphoblasts with phorbol esters causes a similar shift in mobility of Sos. This modification of Sos does not alter its ability to bind Grb2, but correlates with strong inhibition of the binding of the Sos/Grb2 complex to tyrosine phosphorylated sequences, either a tyrosine phosphopeptide in cell lysates or p36 in intact cells. This effect, along with the mobility shift of Sos, can be mimicked in vitro by phosphorylation of Sos by the mitogen-activated protein kinase, ERK1. A novel negative feedback mechanism therefore exists whereby activation of MAP kinases through Ras results in the uncoupling of the Sos/Grb2 complex from tyrosine kinase substrates without blocking the interaction of Sos with Grb2.  相似文献   

11.
Several agents that act through G-protein-coupled receptors and also stimulate phosphoinositide-specific phospholipase C (PI-PLC), including angiotensin II, vasopressin, norepinephrine, and prostaglandin (PG) F2alpha, activated the ERK1 (p44mapk) and ERK2 (p42mapk) members of the mitogen-activated protein (MAP) kinase family in primary cultures of rat hepatocytes, measured as phosphorylation of myelin basic protein (MBP) by a partially purified enzyme, immunoblotting, and in-gel assays. All these agonists induced a peak activation (two to threefold increase in MBP-phosphorylation) at 3-5 min, followed by a brief decrease, and then a sustained elevation or a second increase of the MAP kinase activity that lasted for several hours. Although all the above agents also stimulated PI-PLC, implicating a Gq-dependent pathway, the elevations of the concentration of inositol (1,4,5)-trisphosphate did not correlate well with the MAP kinase activity. Furthermore, pretreatment of the cells with pertussis toxin markedly reduced the MAP kinase activation by angiotensin II, vasopressin, norepinephrine, or PGF2alpha. In addition, hepatocytes pretreated with pertussis toxin showed a diminished MAP kinase response to epidermal growth factor (EGF). The results indicate that agonists acting via G-protein-coupled receptors have the ability to induce sustained activation of MAP kinase in hepatocytes, and suggest that Gi-dependent mechanisms are required for full activation of the MAP kinase signal transduction pathway by G-protein-coupled receptors as well as the EGF receptor.  相似文献   

12.
We have identified a novel mitogen- and stress-activated protein kinase (MSK1) that contains two protein kinase domains in a single polypeptide. MSK1 is activated in vitro by MAPK2/ERK2 or SAPK2/p38. Endogenous MSK1 is activated in 293 cells by either growth factor/phorbol ester stimulation, or by exposure to UV radiation, and oxidative and chemical stress. The activation of MSK1 by growth factors/phorbol esters is prevented by PD 98059, which suppresses activation of the MAPK cascade, while the activation of MSK1 by stress stimuli is prevented by SB 203580, a specific inhibitor of SAPK2/p38. In HeLa, PC12 and SK-N-MC cells, PD 98059 and SB 203580 are both required to suppress the activation of MSK1 by TNF, NGF and FGF, respectively, because these agonists activate both the MAPK/ERK and SAPK2/p38 cascades. MSK1 is localized in the nucleus of unstimulated or stimulated cells, and phosphorylates CREB at Ser133 with a Km value far lower than PKA, MAPKAP-K1(p90Rsk) and MAPKAP-K2. The effects of SB 203580, PD 98059 and Ro 318220 on agonist-induced activation of CREB and ATF1 in four cell-lines mirror the effects of these inhibitors on MSK1 activation, and exclude a role for MAPKAP-K1 and MAPKAP-K2/3 in this process. These findings, together with other observations, suggest that MSK1 may mediate the growth-factor and stress-induced activation of CREB.  相似文献   

13.
14.
Mitogen-activated protein (MAP) kinases mediate responses to a wide array of cellular stimuli. These cascades consist of a MAP kinase or extracellular signal-regulated kinase (ERK), activated by a MAP/ERK kinase (MEK), in turn activated by a MEK kinase (MEKK). MEKK1 has been shown to be a strong activator of the c-Jun N-terminal kinase/stress-actived protein kinase (JNK/SAPK) pathway. We report here that JNK/SAPK binds directly to the N-terminal, noncatalytic domain of MEKK1 in vitro and in transfected cells. Immobilized MEKK1-derived peptides extract JNK/SAPK selectively from cell lysates. MEKK1 coimmunoprecipitates with multiple JNK/SAPK isoforms in transfected cells. Expression of the N terminus of MEKK1 lacking the kinase domain increases activation of endogenous JNK/SAPK by MEKK1. The data are consistent with a model in which MEKK1-JNK/SAPK binding facilitates the receipt of signals from upstream inputs and localizes JNK/SAPK to intracellular targets of the pathway.  相似文献   

15.
We have determined the patterns of mRNA and protein expression of 7 protein kinase C (PKC) isozymes in NIH 3T3 cells. Only PKC-alpha is expressed abundantly in NIH 3T3 cells; endogenous levels of the other 6 PKC isozymes are low or undetectable. We have overexpressed PKC-delta and -epsilon in these cells to observe activation/translocation of these two isozymes and the biological consequences of overexpression. Both PKC-delta and -epsilon, but not PKC-alpha, are partially associated with the insoluble fraction even in the absence of phorbol 12-myristate 13-acetate (PMA). Upon PMA stimulation, both PKC-delta and -epsilon translocate to the insoluble fraction of cell homogenates, as can be observed with the endogenous PKC-alpha. Overexpression of PKC-delta induces significant changes in morphology and causes the cells to grow more slowly and to a decreased cell density in confluent cultures. These changes are accentuated by treatment with PMA. Overexpression of PKC-epsilon does not lead to morphological changes, but causes increased growth rates and higher cell densities in monolayers. None of the PKC-delta overexpressers grow in soft agar with or without PMA, but all the cell lines that overexpress PKC-epsilon grow in soft agar in the absence of PMA, but not in its presence. NIH 3T3 cells that overexpress PKC-epsilon also form tumors in nude mice with 100% incidence. This indicates that high expression of PKC-epsilon contributes to neoplastic transformation.  相似文献   

16.
One of the major signaling pathways by which extracellular signals induce cell proliferation and differentiation involves the activation of extracellular signal-regulated kinases (ERKs). Because calmodulin is essential for quiescent cells to enter cell cycle, the role of calmodulin on ERK2 activation was studied in cultured fibroblasts. Serum, phorbol esters, or active Ras induced ERK2 activation in NIH 3T3 fibroblasts. This activation was not inhibited by calmodulin blockade. Surprisingly, inhibition of calmodulin prior to fetal bovine serum addition prolonged activation of ERK2. Furthermore, inactivation of calmodulin in serum-starved cells induced ERK2 phosphorylation that was dependent on MAP kinase kinase (MEK). Inactivation of calmodulin in serum-starved cells also induced activation of Ras, Raf, and MEK. On the contrary, tyrosine phosphorylation of tyrosine kinase receptors was not observed. These results indicate that calmodulin inhibits ERK2 activation pathway at the level of Ras. Calmodulin inhibition induced overexpression of p21(cip1) which was dependent on MEK activity. We propose that inhibition of Ras by calmodulin prevents the activation of ERK2 at low serum concentration. Thus, entering into the cell cycle after serum addition would imply the overcoming of the inhibitory effect of calmodulin and consequently ERK2 activation. Furthermore, down-regulation of Ras by calmodulin may be also important to determine the duration of ERK2 activation and to prevent a high p21(cip1) expression that would lead to an inhibition of cell proliferation.  相似文献   

17.
Activation of mitogen-activated protein (MAP) kinase (also known as extracellular-signal-regulated kinase, or ERK) by growth factors can trigger either cell growth or differentiation. The intracellular signals that couple growth factors to MAP kinase may determine the different effects of growth factors: for example, transient activation of MAP kinase by epidermal growth factor stimulates proliferation of PC12 cells, whereas they differentiate in response to nerve growth factor, which acts partly by inducing a sustained activation of MAP kinase. Here we show that activation of MAP kinase by nerve growth factor involves two distinct pathways: the initial activation of MAP kinase requires the small G protein Ras, but its activation is sustained by the small G protein Rap1. Rap1 is activated by CRK adaptor proteins and the guanine-nucleotide-exchange factor C3G, and forms a stable complex with B-Raf, an activator of MAP kinase. Rap1 is required for at least two indices of neuronal differentiation by nerve growth factor: electrical excitability and the induction of neuron-specific genes. We propose that the activation of Rap1 by C3G represents a common mechanism to induce sustained activation of the MAP kinase cascade in cells that express B-Raf.  相似文献   

18.
We have examined the functional coupling of the human metabotropic glutamate receptor type 2 (mGluR2) with the regulation of the mitogen activated protein kinase (MAP kinase) signal transduction cascade. We demonstrated that L-glutamate stimulation of the human mGluR2 receptor transiently expressed in chinese hamster ovary (CHO) cells leads to a rapid increase in the activity of p42/p44 MAP kinase (also known as the extracellular signal regulated kinases, ERK1 and ERK2). Activation of p42/p44 MAP kinase has been demonstrated in a peptide phosphorylation assay and through the demonstration of a shift in electrophoretic mobility of p42 MAP kinase following activation. In both assay systems L-glutamate stimulation of MAP kinase was inhibited by pertussis toxin and by the MEK (MAP/ERK activating kinase) inhibitor PD 98059. We conclude that L-glutamate stimulation of the mGluR2 receptor in CHO cells mediated regulation of p42/p44 MAP kinase following the activation of pertussis toxin-sensitive G alpha(i) G-proteins via a distinct protein kinase signalling pathway that utilizes MEK.  相似文献   

19.
The proliferation and differentiation of oligodendrocyte progenitors are stringently controlled by an interacting network of growth and differentiation factors. Not much is known, however, about the intracellular signaling pathways activated in oligodendrocytes. In this study, we have examined the activation of mitogen-activated protein (MAP) kinase [also called extracellular signal-regulated protein kinases (ERKs)] in primary cultures of developing oligodendrocytes and in a primary oligodendrocyte cell line, CG4, in response to platelet-derived growth factor (PDGF) and basic fibroblast growth factor. MAP kinase activation was determined by an ingel protein kinase renaturation assay using myelin basic protein (MBP) as the substrate. The specificity of MAP kinase activation was further confirmed by an immune complex kinase assay using anti-MAP kinase antibodies. Stimulation of oligodendrocyte progenitors with the growth factors PDGF and basic fibroblast growth factor and a protein kinase C-activating tumor promoter, phorbol 12-myristate 13-acetate, resulted in a rapid activation of p42mapk (ERK2) and, to a lesser extent, p44mapk (ERK1). Immunoblot analysis with anti-phosphotyrosine antibodies revealed an increased Tyr phosphorylation of a 42-kDa phosphoprotein band cross-reacting with anti-MAP kinase antibodies. The phosphorylation of p42mapk in PDGF-treated oligodendrocyte progenitors was preceded by a robust autophosphorylation of the growth factor receptor. Immunoblot analysis with anti-pan-ERK antibodies indicated the presence of ERK-immunoreactive species other than p42mapk and p44mapk in oligodendrocytes. The presence of some of the same pan-ERK-immunoreactive species and certain renaturable MBP kinase activities was also demonstrable in myelin preparations from rat brain, suggesting that MAP kinases (and other MBP kinases) may function not only during oligodendrogenesis but also in myelinogenesis.  相似文献   

20.
We previously demonstrated that glia maturation factor (GMF), a 17-kDa brain protein, can be phosphorylated in test tube by several protein kinases, and that endogenous GMF is rapidly phosphorylated upon stimulation of astrocytes by phorbol 12-myristate 13-acetate. We further observed that protein kinase A (PKA)-phosphorylated GMF is a potent inhibitor (IC50 = 3 nM) of the ERK1/ERK2 (p44/p42) subfamily of mitogen-activated protein (MAP) kinase. We now report that, by contrast, PKA-phosphorylated GMF strongly enhances the activity of a related but distinct subfamily of MAP kinase, the p38 MAP kinase, showing an increase of 60-fold over baseline and an EC50 of 7 nM. Non-phosphorylated GMF or GMF phosphorylated by other kinases exhibits only minimal effect. The intracellular interaction of PKA, GMF, and p38 is supported by the phosphorylation of GMF upon cellular stimulation by forskolin (blocked by PKA inhibitor) and by the co-immunoprecipitation of p38 with GMF from cell lysates. Withdrawal of nerve growth factor from PC12 leads to increased GMF phosphorylation with a time course similar to that reported for p38 activation. The results correlate well with a previous report that ERK and p38 carry out opposing functions and implicate GMF as a regulator of major cellular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号