首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complex analog-to-digital converter (ADC) intended for digital intermediate frequency (IF) receiver applications digitizes analog signals at IFs with excellent power/bandwidth efficiency. However, it is vulnerable to mismatches between its in-phase and quadrature (I/Q) paths that can dramatically degrade its performance. The proposed solution mitigates I/Q mismatch effects using a complex sigma-delta (SigmaDelta) modulator cascaded with 9-bit pipeline converters in each of the I and Q paths. The quantization noise of the first stage complex modulator is eliminated using an adaptive scheme to calibrate finite-impulse response digital filters in the digital noise-cancellation logic block. Although low-pass SigmaDelta cascade ADCs are widely used because of their inherent stability and high-order noise shaping, the complex bandpass cascade architecture introduced herein maintains these advantages and doubles the noise shaping bandwidth. Digital calibration also reduces the effects of analog circuit limitations such as finite operational amplifier gain, which enables high performance and low power consumption with high-speed deep-submicrometer CMOS technology. Behavioral simulations of the complex SigmaDelta/pipeline cascade bandpass ADC using the adaptive digital calibration algorithm predict a signal-to-noise ratio (SNR) of 78 dB over a 20-MHz signal bandwidth at a sampling rate of 160 MHz in the presence of a 1% I/Q mismatch.  相似文献   

2.
A quadrature cascaded modulator with continuous-time loop filters is presented for a digital multi-stream FM radio receiver. The ADC achieves a dynamic range of 77 dB and 20 MHz bandwidth centered on an intermediate frequency of 10.5 MHz and is sampling at 340 MHz. The cascaded modulator comprises programmable analog second-order quadrature filters and a digital quadrature noise cancellation filter. The 0.5 chip in 90 nm CMOS consumes 56 mW from a 1.2 V supply.  相似文献   

3.
In a double-sampling quadrature bandpass sigma-delta modulator, path mismatch between the double-sampling branches and between the I/Q paths occurs. In this paper, an analytical study is presented which shows that this causes quantization noise and input signals to fold from the image band into the signal band and that this also results in a self-image component. To reduce the folding from the image band, a novel resonator is presented. This resonator has a bilinear input circuit so that noise and signals exhibits first-order shaping before folding in the band of interest. Next, three different modulator architectures based on the novel resonator are introduced. Finally, the remaining problem of self-image is tackled with a simple, yet efficient offline calibration strategy. Various design examples are shown and simulated to illustrate and prove the effectiveness of the proposed architectures and methods.  相似文献   

4.
A wide bandwidth continuous-time sigma-delta ADC, operating between 20 and 40 MS/s output data rate, is implemented in 130-nm CMOS. The circuit is targeted for applications that demand high bandwidth, high resolution, and low power, such as wireless and wireline communications, medical imaging, video, and instrumentation. The third-order continuous-time SigmaDelta modulator comprises a third-order RC operational-amplifier-based loop filter and 4-bit internal quantizer operating at 640 MHz. A 400-fs rms jitter LC PLL with 450-kHz bandwidth is integrated, generating the low-jitter clock for the jitter-sensitive continuous-time SigmaDelta ADC from a single-ended input clock between 13.5 and 40 MHz. To reduce clock jitter sensitivity, nonreturn-to-zero (NRZ) DAC pulse shaping is used. The excess loop delay is set to half the sampling period of the quantizer and the degradation of modulator stability due to excess loop delay is avoided with a new architecture. The SigmaDelta ADC achieves 76-dB SNR, -78-dB THD, and a 74-dB SNDR or 12 ENOB over a 20-MHz signal band at an OSR of 16. The power consumption of the CT SigmaDelta modulator itself is 20 mW and in total the ADC dissipates 58 mW from the 1.2-V supply  相似文献   

5.
This paper presents the design and experimental results of a 1.25 MHz signal bandwidth 14 bit CMOS SigmaDelta modulator. With our proposed switched-capacitor split-path pseudo-differential amplifiers, this modulator achieves high power efficiency, high sampling frequency, and small die area. A new signal and reference front-end sampling network eliminates the input common-mode voltage and reduces power consumption and linearity requirement of the opamp. A prototype chip has been designed and fabricated in a 0.25 mum CMOS technology with a core area of 0.27 mm2. Experimental results show that an 84 dB dynamic range is achieved over a 1.25 MHz signal bandwidth when clocked at 125 MHz. The power dissipation is 14 mW at 2.4 V including on-chip voltage reference buffers.  相似文献   

6.
A single-bit fifth-order complex continuous-time IF-to-baseband SigmaDelta modulator for AM/FM/IBOC receivers is presented. The input IF is 10.7 MHz and the sampling frequency is 41.7 MHz. The modulator achieves a dynamic range of 118dB in AM mode (3 kHz BW), 98dB in FM mode (200 kHz BW), and 86dB in IBOC mode (500 kHz BW). The modulator's high dynamic range enables the realization of an AM radio receiver without a VGA and without an AM channel-selection filter, thereby reducing system complexity and cost. The elimination of the VGA also improves the sensitivity and the overall noise figure of the receiver. The modulator's spurious free dynamic range is 88 dB in the bandwidth from 25 to 525 kHz. The IM2 distance is 92 dB, and the IM3 distance is 91 dB. The ADC was fabricated in a one-poly five-metal 0.18-mum CMOS process with an active area of 6.0mm2. It consumes 210 mW from a 1.8-V supply  相似文献   

7.
This article has provided a brief overview of the SigmaDelta ADC conversion technologies for SDRs. The wireless receiver challenges were identified, the ADC design considerations and SigmaDelta solutions were discussed, and a low-distortion CT BP SigmaDelta modulator architecture was presented. The article has shown that the proposed CT BP SigmaDelta modulator is suitable for implementing high-IF ADC, making possible the software radio in handhelds. The major challenges in implementing such a high-IF ADC are the power dissipation and the degree of configurability, programmability, and adaptability that can be achieved by applying digital tuning and adaptive calibration  相似文献   

8.
A two-channel time-interleaved second-order sigma-delta modulator for broadband applications including asymmetrical digital subscriber line (ADSL) is presented. The proposed two-channel SigmaDelta modulator uses a single integrator channel which does not require additional active elements for the quantizer input generation, since the integrator outputs are directly used as the input of the quantizers. As a result, the entire modulator can be implemented using only two op-amps, which is beneficial for both power consumption and area. Furthermore, this architecture is robust to channel mismatch effects and can operate with a simple clocking scheme. The SigmaDelta modulator achieves a dynamic range of 85 dB over a 1.1-MHz signal bandwidth with an effective clock frequency of 132 MHz. The circuit is implemented in 0.18-mum CMOS technology using metal-insulator-metal capacitors. The total power consumption of the SigmaDelta modulator is 5.4mW from a 1.8-V supply and occupies an active area of 1.1 mm2  相似文献   

9.
This article presents experimental results of a quadrature bandpass sigma–delta (ΣΔ) modulator based on distributed resonators. The modulator employs transmission lines and transconductors as main components and does not require switches in the loop filter as in the case of switched-capacitor (discrete-time) filters. In addition, the proposed complex modulator does not require a quadrature mixer in the receiver. As main feature, the modulator architecture introduces an innovative way to produce the I and Q outputs that is immune to path mismatch due to the sharing of all the analog circuitry for both paths. The one-bit second-order modulator ADC is able to convert IF signals at fs/2 and 3fs/2 (fs = 50 MHz), achieving an ENOB = 10 bits within a 1 MHz signal bandwidth. Therefore the modulator may be feasible for the typical IF frequencies used in cellular base stations. Furthermore, it provides an image rejection grater than 70 dB. The 0.35 μm BiCMOS chip consumes 28 mW at 3.3 V supply voltage.  相似文献   

10.
This paper presents a quadrature bandpass /spl Sigma//spl Delta/ modulator with continuous-time architecture. Due to the continuous-time architecture and the inherent anti-aliasing filter, the proposed /spl Sigma//spl Delta/ modulator needs no additional anti-aliasing filter in front of the modulator in contrast to quadrature bandpass /spl Sigma//spl Delta/ modulators with switched-capacitor architectures. The second-order /spl Sigma//spl Delta/ modulator digitizes complex analog I/Q input signals at 1-MHz intermediate frequency and operates within a clock frequency range of 25-100 MHz. The modulator chip achieves a peak signal-to-noise-distortion ratio (SNDR) of 56.7 dB and a dynamic range of 63.8 dB within a 1-MHz signal bandwidth and at a clock frequency of 100 MHz. Furthermore, it provides an image rejection of at least 40 dB. The 0.65-/spl mu/m BiCMOS chip consumes 21.8 mW at 2.7-V supply voltage.  相似文献   

11.
Quadrature sampling of intermediate frequency (IF) signals is subject to the well-known problem of gain and phase mismatches between the in-phase (I) and quadrature (Q) channels. This paper presents an IF-input quadrature-sampling switched-capacitor (SC) /spl Sigma//spl Delta/ modulator that circumvents the I/Q mismatch problem by time-sharing between the I and Q channels the critical circuit components, namely, the sampling capacitor and the capacitor of the first-stage feedback digital-to-analog converter (DAC). In addition, a clocking scheme that is insensitive to I/Q phase imbalance is used. A third-order single-loop 1-bit low-pass modulator has been designed and fabricated in a 0.35-/spl mu/m CMOS process with an active area of 0.57mm/sup 2/. The experimental results show that the modulator achieves an image-rejection ratio (IRR) of greater than 75dB throughout a 200-kHz signal bandwidth.  相似文献   

12.
A bandpass sigma-delta modulation analogue-to-digital (A/D) converter that uses direct conversion to baseband with in phase and quadrature paths within the feedback loop is described. The bandpass input signal is processed with continuous-time circuitry and the I/Q baseband signals are processed with switched-capacitor circuits. Experimental and simulation results indicate that the passband centre frequency can be maximised while suppressing the effects of I/Q mismatches  相似文献   

13.
A new cascade SigmaDelta modulator architecture with unity signal transfer function is presented which avoids the need for digital filtering in the error cancellation logic. The combination of these two aspects makes it highly tolerant to noise leakages, very robust to nonlinearities of the circuitry and especially suited for low-voltage implementations at low oversampling. Behavioural simulations are presented that demonstrate the higher efficiency of the proposed topology compared to existing cascades intended for wideband applications.  相似文献   

14.
This paper presents a new implementation of a millimeter-wave heterodyne receiver based on six-port technology.The six-port model is implemented in Advanced Design System(ADS) using S-parameter measurements for realistic advanced simulation of a short-range 60 GHz wireless link.Millimeter-wave frequency conversion is performed using a six-port down-converter.The second frequency conversion is performed using conventional means because of low IF.A comparison between the proposed receiver and a conventional balanced millimeter-wave mixer shows that the proposed receiver improves conversion loss and I/Q phase stability over the local oscillator(LO) and RF power ranges.The results of demodulating a V-band quadrature phase-shift keying(QPSK) signal at a high data rate of 100 Mb/s-1 Gb/s are discussed.The results of a bit error rate(BER) and error vector magnitude(EVM) analysis prove that the proposed architecture can be successfully used for wireless link transmission up to 10 m.  相似文献   

15.
This article discusses the applicability of quadrature ΣΔ modulator (QΣΔM) based analog-to-digital (A/D) conversion in cognitive radio (CR) receivers. First, unavoidable in-phase/quadrature (I/Q) mismatch effects, limiting the dynamic range, are analyzed in closed-form in the case of a first-order modulator. In addition, using the derived analytical converter model, it is shown that notching the signal transfer function (STF) of the modulator at the mirror frequencies of the desired signals will effectively cancel the I/Q imbalance induced mirror-frequency interference in case of the modulator feedback mismatch. In practice, such STF design is easy to implement within the existing converter circuitry, as will be demonstrated in this article. The latter part of the article proposes a novel complex multiband QΣΔM scheme, particularly aimed for the CR receivers. This multiband scheme allows parallel reception of scattered frequency chunks in the CR context and is stemming from the additional degrees of freedom in noise transfer function (NTF) design, provided by the QΣΔM principle. Here multiple noise shaping notches on distinct frequencies are effectively realized through proper design of complex NTF. The modulator structure also allows flexible reconfigurability of the notches with straightforward parameterization of the modulator transfer functions. When combined with the above mirror-frequency rejecting STF design, the concept is demonstrated and proved effective and robust against I/Q imbalances using practical radio signal simulations in realistic received signal conditions.  相似文献   

16.
零中频接收机已成为未来无线终端发展潮流,但是零中频的结构会引入较大的射频损伤;本文首先介绍了射频I/Q不平衡时对高斯以及频率选择性信道下OFDM接收机性能的影响;通过特殊导频设计,解耦合I、Q路的相互影响;如此可以方便地估计和补偿射频I/Q不平衡对高斯以及频率选择性信道的影响。仿真表明本文所示方法大大提高了OFDM零中频接收机的性能。  相似文献   

17.
A drawback of continuous-time SigmaDelta modulators is their sensitivity to clock jitter. One way to counteract this is to use a multibit feedback loop which requires a (high resolution) multibit quantizer. However, every extra bit in the quantizer doubles its complexity, power consumption and capacitive load for the analog circuit that needs to drive the quantizer. In this paper a new concept for the quantization in sigma delta modulators is proposed. It allows to significantly reduce the required amount of comparators in the multibit quantizer. Three architectures that realize this new concept are presented and their implementation issues discussed. The architectures' performance has been compared with a conventional modulator through computer simulations. Compared to the conventional modulator, the proposed architectures achieve the same performance, with much less comparators in the quantizer  相似文献   

18.
A novel cascade SigmaDelta modulator architecture is presented that employs inter-stage resonation to increase its effective resolution compared to traditional cascades while presenting very relaxed output swing requirements and, subsequently, high robustness to nonlinearities of the amplifiers. In addition, the use of loop filters based on forward-Euler integrators, instead of backward-Euler integrators as proposed in earlier approaches, simplifies the switched-capacitor implementation and makes the proposed architecture very suited to wideband A/D conversion.  相似文献   

19.
The developments of the high speed analog to digital converters (ADC) and advanced digital signal processors (DSP) make the smart antenna with digital beamforming (DBF) a reality. In conventional M-elements array antenna system, each element has its own receiving channel and ADCs. In this paper, a novel smart antenna receiver with digital beamforming is proposed. The essential idea is to realize the digital beamforming receiver based on bandpass sampling of multiple distinct intermediate frequency (IF) signals. The proposed system reduces receiver hardware from M IF channels and 2M ADCs to one IF channel and one ADC using a heterodyne radio frequency (RF) circuitry and a multiple bandpass sampling digital receiver. In this scheme, the sampling rate of the ADC is much higher than the summation of the M times of the signal bandwidth. The local oscillator produces different local frequency for each RF channel The receiver architecture is presented in detail, and the simulation of bandpass sampling of multiple signals and digital down conversion to baseband is given. The principle analysis and simulation results indicate the effectiveness of the new proposed receiver.  相似文献   

20.
A compact integrated antenna with direct quadrature conversion circuitry for broad-band millimeter-wave communications is proposed. The conversion circuits include two even-harmonic mixers based on antiparallel diode pairs (APDPs). The equivalent circuit of the APDP derived here provides good agreement with the measured data from 17 to 23 GHz. Overall phase and amplitude imbalance between the in-phase/quadrature (I/Q) output channels are less than 1.2/spl deg/ and 1 dB at IFs of 10 and 100 MHz, respectively. An overall RF power conversion loss of 14.6 dB at the quadrature I/Q channels including the antenna is achieved in the frequency range from 39.75 to 40.25 GHz with a local oscillator (LO) power level of 11.8 dBm. LO leakages at 20 and 40 GHz are -31.5 and -44.8 dBm, respectively. In order to demonstrate the system capabilities for broad-band digital communication, a communication link is built with a pair of the proposed front-ends. Data transmission up to 1 Gb/s data rate for quadrature phase-shift keying modulation is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号