首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
We introduced an inhibitor to the polymerization reaction of bioactive bone cement (AWC) consisting of MgO-CaO-SiO2-P2O5-CaF2 apatite and wollastonite containing glass-ceramic powder and bisphenol-alpha-glycidyl methacrylate based resin, together with an increased amount of accelerator but without any prolongation of its setting time in order to improve the degree of polymerization and decrease the amount of incompletely polymerized monomers on the cement surface. A comparison was made between the AWC containing the inhibitor [AWC(I+)] and the AWC without it [AWC(I-)] with regard to setting parameters, mechanical properties, and surface reactivity in vitro and in vivo. The proportion of glass-ceramic powder added to the AWC was 70% (w/w). The total amount of heat generation and the peak temperature of the AWC(I+) during polymerization were slightly greater than those of the AWC(I-). The mechanical strength of AWC(I+) was higher than that of the AWC(I-) under wet conditions. In simulated body fluid, the width of the Ca-P rich layer on the surface of the AWC(I+) was less than that on the AWC(I-) after 28 days of immersion, although the rate of apatite formation on the top surface of the AWC(I+) was almost identical to that on the AWC(I-) surface. Histological examination using rat tibiae up to 26 weeks revealed that the bioactivity of the AWC(I+) was equivalent to that of the AWC(I-). Scanning electron microscopy and energy-dispersive X-ray microanalysis demonstrated that the Ca-P rich layer in the AWC(I+) was significantly narrower than that in the AWC(I-) at the same time points. These results indicate that introduction of the inhibitor improved the mechanical properties of the AWC and made the Ca-P rich layer narrower, but it had no adverse effect on bioactivity.  相似文献   

2.
Recently much attention has been paid to bioactive filler-resin composite cements because they can solidify in a few minutes to give high mechanical strengths and they can bond to living bone. In this study the dependence on resin of apatite-forming ability in simulated body fluid (SBF) was investigated for the composite cements of bioactive CaO-SiO2-P2O5-CaF2 glass with polymethyl methacrylate (PMMA) or bisphenol-a-glycidyl methacrylate/triethyleneglycol (Bis-GMA/TEGDMA) resin. The PMMA-containing composite cement did not show the apatite-forming ability in SBF because the reaction of the glass grains with SBF was inhibited due to the complete covering of the grains with PMMA. To the contrary, the Bis-GMA/TEGDMA-containing cement exhibited high apatite-forming ability in SBF; these monomers significantly dissolved from the composite surface into SBF, causing a direct exposure of the glass grains to SBF to convert into silica gel. It is assumed that thus formed silica gels, and the silicate ions that were dissolved and adsorbed onto the composite surface, induced the apatite nucleation between the spaces of the glass grains and on the composite surface, respectively. A continuous bone-like apatite layer was formed on the top surface of the glass-Bis-GMA/TEGDMA composite cement in a short period.  相似文献   

3.
The interface between apatite- and wollastonite-containing glass-ceramic (A-W GC) and bone after long-term implantation was studied by scanning and transmission electron microscopy (SEM and TEM) using rat and human specimens. First, particles of A-W GC (100-220 microns in diameter) were implanted into rat tibiae, and specimens were prepared for observation at 24, 48, 72, and 96 weeks after the operation. These long-term specimens showed an A-W GC-bone interface different from that at an earlier stage, which was investigated in our previous studies. SEM showed that the Ca-P-rich layer was wider, suggesting that leaching of ions from the A-W GC had continued even after bonding with bone. In some regions, the material particles were evidently replaced by the bone. TEM showed that the intervening apatite layer had become indistinct, and that A-W GC had intermingled with bone at the interface. In some regions, the surface of the A-W GC was degraded. These findings suggest that the surface region of A-W GC is slowly replaced by bone. Second, a human bone specimen, which included A-W GC particles (300-700 microns in diameter) implanted as a bone filler for about 75 weeks was harvested and investigated. Excellent A-W GC-bone bonding was observed, and the ultrastructure of the interface was similar to that in rats after long-term implantation. This finding demonstrated that A-W GC possibly worked in human bone in the same way as in rat bone, showing excellent bioactivity.  相似文献   

4.
Silica glass powder (SG-P) made by a fusing-quenching method was added as a second filler to a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 apatite and wollastonite containing glass-ceramic powder (AW-P) and bisphenol-a-glycidyl methacrylate (Bis-GMA)-based resin, to achieve a higher mechanical strength and better handling properties in use. Five types of cement were used, containing different weight ratios of AW-P/SG-P (Group 1 = 100/0; Group 2 = 75/25; Group 3 = 50/50; Group 4 = 25/75; and Group 5 = 0/100) as filler, to evaluate the effect of SG-P content on the biological, mechanical, and handling properties. The total proportion of filler added to the cements was 85% w/w. The compressive, bending, and tensile strengths and fracture toughness of the cements increased with SG-P content. The viscosity of cements also increased with SG-P content, and every cement could be handled manually. The cements were evaluated in vivo by packing the intramedullary canals of rat tibiae. An affinity index was calculated for each cement; this was the length of bone directly apposed to cement expressed as a percentage of the total length of the cement surface. Histological examination of implanted tibiae for up to 26 weeks showed that the affinity indices decreased with SG-P content and that those of all the cement groups increased with time. At 26 weeks, Groups 1 and 2 had almost identical affnity indices (79% and 75%; no significant difference) but those of the other groups remained at <50%. Group 2 had better mechanical and handling properties than Group 1, and an SG-P content in the filler of no more than 25% w/w did not interfere strongly with the bioactivity of the cement.  相似文献   

5.
The bone bonding ability of three types of bioactive bone cement A, B, and C consisting of glass or glass ceramic powder and bisphenol-alpha-glycidyl methacrylate resin was evaluated. Type A contained MgO-CaO-SiO2-P2O5-CaF2 glass powder; Type B, MgO-CaO-SiO2-P2O5-CaF2 glass ceramic powder; and Type C, MgO free CaO-SiO2-P2O5-CaF2 glass powder. Rectangular plates (2 x 10 x 15 mm) of Types A, B, C, and polymethylmethacrylate cements were implanted into the tibial metaphyses of male rabbits and the failure load measured by mechanical failure testing (detaching test) 10 and 25 weeks after implantation. The failure loads of Types A, B, C, and polymethylmethacrylate cements were respectively, 29.52, 41.48, 28.22, and 0.29 N at 10 weeks and 33.42, 41.27, 33.64, and 0.20 N at 25 weeks. Examination of the bone cement interface revealed that all the bioactive bone cements achieved direct bone contact with the bone. These results showed that all three types of bioactive bone cement have the ability to bond to bone, and the cement containing glass ceramic powder revealed higher bonding strength than did those containing glass powder.  相似文献   

6.
A three-dimensional carbon/carbon composite (3D C/C) was studied as potential bone-repairing material; its major mechanical properties were found to be closer to those of human bone than other common bone-repairing materials available. In vitro calcification tests revealed that as-received 3D C/C is almost bioinert in simulated body fluid (SBF) over an immersion period of 4 weeks. To improve the bioactivity of 3D C/C, surface modification was accomplished through two practical routes: (1) grafting with polyethylene glycol (PEG) and (2) phosphorylation and precalcification. After grafting with alpha, omega di(aminopropyl) polyethylene glycol 800 (NH2-PEG-NH2), a continuous layer of calcium phosphate was formed on the surface of 3D C/C in SBF after 4 weeks. Phosphorylated 3D C/C samples have the ability to induce apatite precipitation after precalcification in a saturated Ca(OH)2 solution for 1 week. To speed up the coating process, a calcification solution with collagen was developed in which a collagen/apatite coating layer can be formed on 3D C/C in 9 h in ambient conditions.  相似文献   

7.
The bioactivity, i.e., bone-bonding ability, of 26 glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2 was studied in vivo. This investigation of bioactivity was performed to establish the compositional dependence of bioactivity, and enabled a model to be developed that describes the relation between reactions in vivo and glass composition. Reactions in vivo were investigated by inserting glass implants into rabbit tibia for 8 weeks. The glasses and the surrounding tissue were examined using scanning electron microscopy (SEM), light microscopy, and energy-dispersive X-ray analysis (EDXA). For most of the glasses containing < 59 mol % SiO2, SEM and EDXA showed two distinct layers at the glass surface after implantation, one silica-rich and another containing calcium phosphate. The build-up of these layers in vivo was taken as a sign of bioactivity. The in vivo experiments showed that glasses in the investigated system are bioactive when they contain 14-30 mol % alkali oxides, 14-30 mol % alkaline earth oxides, and < 59 mol % SiO2. Glasses containing potassium and magnesium bonded to bone in a similar way as bioactive glasses developed so far.  相似文献   

8.
SiO2-CaO-MgO glass and glass-ceramic powder doped with Nd3+ were synthesized with sol-gel method.Tetraethylorthosilicate (TEOS),Ca(NO3)2·4H2O,Mg(NO3)2·6H2O,Nd(NO3)3·6H2O,ethanol,distilled water,and HNO3 were used as starting materials.The synthesized powder’s properties were examined with simultaneous thermal analysis (STA),X-ray diffraction (XRD),photoluminescence (PL) and scanning electron microscopy (SEM) analysis.The STA curves showed that the softening point and crystallization temperatures were shifted to higher temperatures with increasing dopant content.Regarding XRD patterns of glass samples,Nd was found to act as an intermediate oxide in glass matrix.The XRD patterns of glass-ceramic samples indicated that bredigite and akermanite crystallized in the glass matrix after heat treating at 900 oC.The fluorescence spectra showed that glass-ceramics emitted much stronger irradiation than glasses with the same dopant content.The SEM images illustrated uniform and homogeneous distribution of applied oxides in glass and glass-ceramic compositions.  相似文献   

9.
选用宝钢高炉矿渣为主要原料,研究了两种不同类型高炉矿渣微晶玻璃的组成、热处理制度以及晶核剂选用,得出了适用于该矿渣的微晶玻璃基础配方组成范围,以及与此相适应的热处理制度。利用高炉矿渣制得的微晶玻璃,各项性能达到设计指标,废渣利用率40%以上,具有较高的工程应用价值。  相似文献   

10.
The glass forming range of Er2O3-Al2O3-B2O3-SiO2 system was explored, and the effect of the content of Al2 O3 and Er2 O3 on glass-forming region was experimentally examined. It is shown that the region of glass formation range expends when the content of Al2O3 is changed from 15% to 20%, while it shrinks when the content of Er2O3 is changed from 20% to 30%. At the same time, the glass forming ability of Er2O3-Al2O3-B2O3-SiO2 system was also discussed using a value of β, which is an indication of crystallization tendency of glasses, calculated from thermo-analysis data. It is found that the glass forming ability of Er2O3-Al2O3-B2O3- SiO2 glasses is poor, while the glasses network may be enhanced when Al2O3 is added to the system, the glass forming ability being heightened. In addition, the crystallization temperatures of the rare earth glasses were determined using differential thermal analysis technique. The Er2O3-Al2O;-B2O3-SiO2 glass samples were heat treated at 1000,1100 and 1260℃ respectively. The results show that it is the Er2O3 phase that separates out from the glasses after crystaline heat treatment, and it is tiered up in glasses, as detected through XRD and SEM. This indicates that the phase separation occurs when the glasses are heated, Er3 being mainly distributed in the boron rich phase, then separated out from glasses, while the silicate rich phase remaining glassy state.  相似文献   

11.
We have developed a new drug delivery system using porous apatite-wollastonite glass ceramic (A-W GC) to treat osteomyelitis. A-W GC (porosity, 70% and 20% to 30%), or porous hydroxyapatite (HA) blocks (porosity 35% to 48%) used as controls, were soaked in mixtures of two antibiotics, isepamicin sulphate (ISP) and cefmetazole (CMZ) under high vacuum. We evaluated the release concentrations of the antibiotics from the blocks. The bactericidal concentration of ISP from A-W GC was maintained for more than 42 days, but that from HA decreased to below the detection limit after 28 days. The concentrations of CMZ from both materials were lower than those of ISP. An in vivo study using rabbit femora showed that an osseous concentration of ISP was maintained at eight weeks after implantation. Osteoconduction of the A-W GC block was good. Four patients with infected hip arthroplasties and one with osteomyelitis of the tibia have been treated with the new delivery system with excellent results.  相似文献   

12.
采用高温热蒸发法在金刚石表面镀覆SiO_2,用扫描电镜(SEM)、X线衍射(XRD)和能谱分析对SiO_2的形貌与物相组成进行观察与分析,研究SiO_2晶体的生长机制。结果表明,在较低温度下(1 300℃)金刚石表面生成SiC和SiO_2颗粒,无法形成涂层。温度升高到1 400℃时,金刚石表面形成许多由C,Si,O元素组成的细小蝌蚪状组织。当温度升高到1 500℃时,金刚石表面镀覆良好的Si-O涂层,Si-O涂层上有许多SiO_2晶粒、微米棒与晶须。SiO_2晶体的生长机制为:首先在金刚石表面沉积一层Si-O涂层,然后在该涂层上析出SiO_2颗粒,在SiO_2颗粒上进一步形成新的SiO_2颗粒和晶须。  相似文献   

13.
BaO对连铸保护渣熔化行为和结晶矿相的影响   总被引:3,自引:1,他引:2  
实验研究和分析了BaO(2%~8%)对连铸结晶器保护渣(%:3~5MgO、1~2Al2O3、8Na2O、3~4B2O3、2Li2O、3~4C)熔化和结晶温度的影响以及无氟渣的结晶矿相。结果表明,随BaO含量由2%增加至8%,保护渣的熔化温度由1053℃降至1011℃,结晶温度降低较少,从954℃降至948℃;无氟渣的结晶矿相为黄长石,是铝黄长石(Ca2Al2SiO7)、镁黄长石(Ca2MgSi2O7)和钠黄长石(NaCaAlSi2O7)的固溶体,可通过调整渣膜中黄长石的析晶率,控制结晶器与坯壳间的传热。  相似文献   

14.
New blue luminescence glass-ceramic samples were prepared in air by annealing of the Eu^3+-doped Li2O-BaO-B2O3 glass. The as-made glass samples only showed the sharp emission peaks assigned to the transitions of 5^D0-7^Fj (J=0, 1, 2, 3, 4) of Eu^3+ ions. The glass-ceramic samples gave a strong and broad emission band peaking at about 382 nm ascribed to the 5d-4f transition of Eu^2+ ions. The optical properties such as excitation and emission spectra, and the decay time of the Eu^2+ ions were investigated in the glasses or the glass-ceramics samples. The X-ray diffraction pattern showed that LiBan9O15 might be demonstrated to be the crystallites in the glass-ceramic, which contributed to the blue luminescence. SEM micrograph was investigated on the glass-ceramic samples obtained by crystallization of the glass matrix resulting in a mixture of poly-crystals.  相似文献   

15.
应用铸造快冷及可控结晶技术制备3种玻璃陶瓷纳米复合介电材料——PbNb2O6 +NaNbO3 +SiO2 (PNS),BaNb2O6+ NaNbO3+ SiO2 (BNS)和SrNb2O6+ NaNbO3+ SiO2( SNS).研究了这3种复合材料的结晶性能,微观形貌和介电性能.X射线衍射(XRD)的分析结果显示:PNS及SNS的玻璃在750℃可控结晶时,均形成中间相A2Nb2O-7(A=Pb,Sr),且该中间相在850℃时消失,此时形成MNb2O6+NaNbO3(M=Pb,Sr)的高介电常数相,而BNS则未经过中间相,在750℃直接析出MNb2O6+NaNbO3(M=Ba)的高介电常数相.在所有的样品中,随着退火温度的升高,晶粒均有逐渐长大聚集的趋势.同时,SNS玻璃陶瓷在750℃及850℃结晶退火处理时,均析出枝状晶粒,异于PNS和BNS的球状晶粒.由可控结晶技术制备的玻璃陶瓷介电性能受热处理过程中所形成的介电相组成及其体积分数和晶粒尺寸的影响很大.分析测试了这3种体系玻璃陶瓷的介电常数与结晶化处理温度之间的关系及介电常数的电场稳定性.在900℃结晶退火时,PNS玻璃陶瓷具有最高的介电常数( ~501,1 kHz),而BNS的介电常数在0~15 kV ·mm-1的测试范围内具有最好的电场稳定性(<15%).  相似文献   

16.
通过形核理论解释了IF钢中Al2O3-Ti N的形成机理。RH中加TiFe合金化后由于局部wTi.wN浓度积有很大的过饱和度,满足异质形核条件,Ti N会以钢液中Al2O3为核心生成Al2O3-Ti N复合夹杂,但此时的Ti N并不稳定会随着钢液中wTi浓度的均匀而发生分解,在凝固过程中由于温度的降低和wTi的偏析会在凝固前沿Ti N再次析出。  相似文献   

17.
提出了拜尔法-铝酸钙水泥新工艺。用石灰将拜尔法种分母液中的Al2O3沉下来,经分离洗涤,得到沉铝渣,其主要物相为3CaO·Al2O3·6H2O,粒度细,比表面积大,受热脱水后变成12CaO·7Al2O3和CaO。将沉铝渣配一定的氧化铝或氢氧化铝,可以烧制Al2O3含量为70%和80%的铝酸钙水泥,降低原料成本约30%。沉铝后的种分母液(αk40-100)返回拜尔溶出,可提高循环效率95%以上。种分母液沉铝时还可以得到较高的碳碱苛化率(25%-60%)和较好的溶液净化效果(SiO2含量降低80%以上,Ns含量降低20%以上)。  相似文献   

18.
利用污泥焚烧灰渣含有大量的氧化硅以及一定量重金属和磷的组成特点,将其作为成分调整剂、晶核剂及助熔剂,在未添加任何化学制剂的条件下与冶金高炉渣协同制备了具有良好的力学性能和化学稳定性的污泥–高炉渣微晶玻璃.利用差热分析、X射线衍射、扫描电镜等分析手段,并结合力学性能和化学稳定性能测试,研究了不同热处理制度对微晶玻璃性能的影响规律以及微晶玻璃的析晶过程.污泥–高炉渣微晶玻璃最佳热处理条件是850℃下形核保温1 h,980℃下析晶保温2 h.在此条件下制备的微晶玻璃具有45 MPa的抗折强度、200 MPa的抗压强度和质量损失率小于0.2%的耐酸和耐碱性能.微晶玻璃初始结晶温度为880℃,析出晶相以钙长石为主,同时包括少量的钙铝黄长石.随着析晶温度提高,析晶时间增加,钙铝黄长石相析晶量增加;大量增加的钙铝黄长石针状晶体呈放射状分布并有利于产品抗弯强度的提高;但析晶时间过长时,晶粒将长大粗化,这不利于微晶玻璃性能的改善.   相似文献   

19.
Glass and glass-ceramic materials were investigated as SOFC seals at 800 ~ 850 ℃. The material was based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system. The sealant has a minimum thermal expansion mismatch with yttria-stabilized zirconia (YSZ)electrolyte and Ni/gYSZ for the anode. The sealant has a superior stability during the process of operation in SOFC and can withstand thermal shock during the process of thermal cycling. The results show that the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system sealant can be used as sealing materials for SOFC.  相似文献   

20.
High transparency in visible region was required for red-light-emitting Y2O3:Eu3+ thin film phosphors. Such films were obtained via chemical bath deposition on bare SiO2 glass substrates through heterogeneous nucleation with further heat treatment. Thin amorphous yttrium basic carbonate films could be completely transformed to crystalline Y2O3 at 650 °C. X-ray diffraction and field-emission scanning electron microscopy were used to characterize these products. The deposition temperature and the post-anneali...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号