首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The potassium ions in potassium β-ferrite ((1 + x)K2O ·11Fe2O3) crystals were exchanged with Na+, Rb+, Cs+, Ag+, NH4+, and H3O+ in molten nitrates or in concentrated H2SO4. On the other hand, spinel and hexagonal ferrites were formed by soaking the crystals in the melt of divalent salts. The crystals of K+, Rb+, and Cs+β-ferrites decomposed to form α-Fe2O3 at high temperatures of 800° to 1100°C. In addition, H3O+, NH4+, and Ag+β-ferrites decomposed to form α-Fe2O3 at relatively low temperatures of 350° to 650°C, in accordance with the stabilities of the inserted ions. The electrical properties of some β-ferrites were measured.  相似文献   

2.
The standard Gibbs energy of formation of the spinel MgAl2O4 from component oxides, MgO and α-Al2O3, has been determined in the temperature range 900 to 1250 K using a solid-state cell incorporating single-crystal CaF2 as the solid electrolyte. The cell can be represented as—Pt,O2,MgO+MgF2|CaF2|MgF2+MgAl2O4+α-Al2O3,O2,Pt—The standard Gibbs energy of formation from binary oxides, computed from the reversible emf, can be represented by the expression—capdelta G °f,ox=−23600 − 5.91 T (±150) J/mol—The 'second-law' enthalpy of formation of MgAl2O4 obtained in this study is in good agreement with high-temperature solution calorimetric studies reported in the literature.  相似文献   

3.
Synthesis of Titanate Derivatives Using Ion-Exchange Reaction   总被引:3,自引:0,他引:3  
Two types of titanate derivatives, layered hydrous titanium dioxide (H2Ti4O9· n H2O) and potassium octatitanate (K2Ti8O17) with a tunnellike structure, were synthesized using an ion-exchange reaction. Fibrous potassium tetratitanate (K2Ti4O9· n H2O) was prepared by calcination of a mixture of K2CO3 and TiO2 with a molar ratio of 2.8 at 1050°C for 3 h, followed by boiling-water treatment of the calcined products for 10 h. The material then was transformed to layered H2Ti4O9· n H2O through an exchange of K+ ions with H+ ions using HCl. K2Ti8O17 was formed by a thermal treatment of KHTi4O9· n H2O. Pure KHTi4O9· n H2O phase was effectively produced by a treatment of K2Ti4O9 with 0.005 M HCl solution for 30 min. Thermal treatment at 250°–500°C for 3 h resulted in formation of only K2Ti8O17.  相似文献   

4.
The vaporization of the samples of the compositions Ga2O3+ LaGaO3, LaGaO3+ La4Ga2O9, and La4Ga2O9+ La2O3 was investigated using Knudsen effusion mass spectrometry in the temperature range 1494–1937 K. The partial pressures of the gaseous species O2, Ga, GaO, Ga2O, and LaO were determined over the samples investigated. The equilibrium partial pressures were used for the calculation of the thermodynamic activities of the components at 1700 K. Gibbs energies of formation of LaGaO3( s ) and La4Ga2O9( s ) at 1700 K from the component oxides were derived from the thermodynamic activities as −46.4 ± 4.7 and −99.2 ± 7.9 kJ·mol−1, respectively. The results were compared with the literature data obtained using other methods.  相似文献   

5.
The subliquidus miscibility gap in the system K2O-B2O3-SiO2 has been determined for compositions with molar ratios SiO2/B2O3<2 and T≥550°C. The shape of the miscibility gap is an elongated dome similar in form to, but less extensive than those in the lithium and sodium borosilicate systems. The consolute composition (molar) and temperature are estimated to be 4 ± 1 K2O -30±8 B2O3-66±8 SiO2 and 629±5°C, respectively .  相似文献   

6.
An epitaxial β-alumina crystal growth method was used to modify α-AI2O3 platelet surfaces before inclusion as a reinforcing phase in partially stabilized zirconia (3Y-TZP). The as-grown surface phase was Na-β"-AI2O3. This was converted to Ca-β"-AI2O3 by ion exchange, as the latter is more temperature-stable at composite sintering temperatures. The conditions of formation, thermal stability, and chemical compatibility of these interfacial phases were examined. α-AI2O3 platelets with Ca-β"-AI2O3 film were incorporated into 3Y-TZP. The β"-AI2O3/ZrO2 interface was found to promote platelet debonding and pullout, thus enhancing the α-AI2O3 platelet/crack interactions during the fracture process.  相似文献   

7.
The standard Gibbs free energies of formation of CuAlO2 and CuAl2O4 were determined in the range 700° to 1100°C, using emf measurements on the galvanic cells (1) Pt,CuO +] Cu2O/CaO-ZrO2/O2,Pt; (2) Pt,Cu +] CuAlO2+] Al2O3/CaO-ZrO2/ Cu +] Cu2O,Pt; and (3) Pt,CuAl2O4+] CuAlO2+]Al2O3/CaO-ZrO2/O2,Pt. The results are compared with published information on the stability of these compounds. The entropy of transformation of CuO from tenorite to the rock-salt structure is evaluated from the present results and from earlier studies on the entropy of formation of spinels from oxides of the rock-salt and corundum structures. The temperatures corresponding to 3-phase equilibria in the system Cu2O-CuO-Al2O3 at specified O2 pressures calculated from the present results are discussed in reference to available phase diagrams.  相似文献   

8.
As an alternative, the voltage data of Kurita et al . recently published on galvanic cells with commercial α-Al2O3 as a solid electrolyte and with O2, H2O/α-Al2O3 as well as H2, H2O/α-Al2O3 as electrodes can be quantitatively described by assuming that α-Al2O3 represents a mixed sodium ionic–electronic conductor rather than a protonic–electronic conductor. From the evaluation of the experimental data, numerical values for the p -type electronic conduction parameter are obtained that agree sufficiently well with the data known to date for the sodium ion conductor Na-beta-Al2O3.  相似文献   

9.
High-pressure sintering of nanocrystalline γ-A12O3 has been studied over a temperature range of 923-1323 K and at a pressure of 1 GPa. The γ-Al2O3 to α-Al2O3 transformation temperature changed from 1473 K without pressure to ∼1023 K at 1 GPa. Full density was obtained at 1273 and 1323 K in 10 min. The microhardness value of fully dense α-alumina with a grain size of 142 nm was found to be 25.3 ± 0.8 GPa. The Hall-Petch slope for the very fine grain size range is different from that of the coarse-grained alumina.  相似文献   

10.
The saturation surface of cassiterite, SnO2, was determined for liquids in the system K2O–Al2O3–SiO2 as a function of bulk composition and temperature. At fixed K2O/Al2O3 cassiterite solubility varies weakly with SiO2 concentration (76 to 84 mol%), temperature (1350° to 1550°C), and log ( f O2) (−0.7 to −5.3). Cassiterite solubility is also approximately independent of composition in liquids with molar ratios of K2O/Al2O3 lessthan equal to 1 (peraluminous liquids). As K2O/Al2O3 increases from 1 (peralkaline liquids), however, cassiterite solubility increases steeply and approximately linearly with K2O in excess of Al2O3. It is proposed that potassium in excess of aluminum combines with Sn4+ to form quasi-molecular complexes with an effective stoichiometry of K4SnO4.  相似文献   

11.
The ultraviolet absorption of vanadium(V) in R2O-B2O3 glasses (R represents Li, Na, or K) and in aqueous buffer solutions was investigated. In glasses of variable R2O:B2O3 ratio, a change in the absorption spectra similar to the [VO4]3- → [VO3(OH)]2- change in aqueous solution was observed. It is suggested that vanadium(V) in these glasses may be present as either [VO4]3- or [VO3O1/2]2- (O1/2 indicates a bridging oxygen ion), depending on the basicity of the melt. The critical R2O concentration, above which this change in vanadium(V) environment occurs with increasing alkalinity, is 24, 26, and ≅30 mol%, for K2O, Na2O, and Li2O, respectively.  相似文献   

12.
Phase equilibria were determined for the systems NiO-Cr2O3−O2, MgO-Cr2O3,-O2, and CdO-Cr2O3−O2 from 450° to above 850° C and at oxygen pressures of from 2 to 3500 atm. Only two intermediate phases were found in the nickel system: NiCrO., (CrVO4 structure) and the spinel NiCr2O4. The magnesium and cadmium systems are similar in that they have three analogous phases: the low-temperature α-MgCrO4 and α-CdCrO4 (both with the CrVO4 structure), the high-temperature β-MgCrO4 and β-CdCrO4 (both with the α-MnMoO4 structure), and the spinels MgCr2O4 and CdCr2O4. The cadmium system contains an additional phase, Cd2CrO5, which is primitive monoclinic.  相似文献   

13.
Mullite materials usually contain a residual glassy phase rich in SiO2, which concentrates impurities as Na2O, K2O, Fe2O3, and other minority compounds. A suitable way to minimize this glassy phase is the reduction and volatilization of its components by calcination at high temperatures (1300–1450°C) in atmospheres with a very low partial pressure of O2. Over 95% of the Na2O, K2O, and Fe2O3 in mullite can be removed in this way, leaving concentrations lower than 0.02% by weight. To avoid the degradation of mullite that occurs when the partial pressure of O2 is too low, the material to be purified is covered with TiO2 plates.  相似文献   

14.
In the presence of a fluorine mineralizer, highly aggregated, <5 μm α-Al2O3 platelet particles form by vapor transport during the thermal transformation of γ-alumina. Platelet aggregation was determined to occur by platelet inter-growth and by edge nucleation on primary α-Al203 platelets. The addition of 1010α-alumina seed particles/cm3γ–Al2O3 resulted in the development of discrete particles during the initial stage of transformation. Impingement of the growing platelets during the latter stage of transformation, however, resulted in intergrowth, a process which was not changed by seeding. Particle size distribution broadening was observed to increase with increasing HF and H2O concentrations because vapor reactant supersaturation increases the degree of edge nucleation. When initially low HF and H2O concentrations were used in seeded systems, however, essentially aggregate-free α-Al2O3 platelets of 10–15 μm were obtained.  相似文献   

15.
The phase relations in the Si3N4-rich portion of the Si3N4–AlN–Y2O3 rystem were investigated using hot-pressed bodies. The one-phase fields of β3 and α, the twophase fields of β+α, β+M (M=melilite), and α+M, and the three-phase fields of β+α+M were observed in the Si3N4-rich portion. The α- and β-sialons are not two different compounds but an allotropic transformation phase of the Si–Al–O–N system, and an α solid solution expands and stabilizes with increasing Y2O3 content. Therefore, the formulas of the two sialons should be the same.  相似文献   

16.
The enthalpy and entropy for the hydration of sodium β - and β '-aluminas have been determined by measuring the infrared absorbance of single-crystal samples following equilibration at elevated temperatures in water vapor pressures ranging from 3 to 70 kPa. The equilibrium water concentrations can be varied continuously and reversibly up to saturation concentrations of about 0.9H2O-Na1.2AI11O17.1 for the β-phase and 0.4H2O.Na1.67Mg.67Al10.33O17 for the β'-phase. The hydration reactions are exothermic; Δ H =−56 ± 2 for sodium β '-aIumina and ΔH =−67 ± 2 kJ/mol for sodium β-alumina. The entropies of hydration are about −143 ± 6 J/(mol-K) for both sodium β - and β '-aIuminas.  相似文献   

17.
The crystal-growth process and growth conditions of β-alumina (Na2O · Al2O3) were investigated using the Na2B4O7-Na3AlF6 flux method. β-Alumina (electric fusion brick) was used as both nutrient and seed. Weight loss of the flux varied widely for various runs: ≅ 10 wt% of flux evaporated at 100 h, ≅ 17 wt% at 150 h, and 43 wt% at 600 h. When β-alumina crystal was grown, only 20 wt% Na2B4O7 was added to the Na3AlF6 flux. The linear growth rates of the β-alumina single crystal grown by an Na3AlF6-20 wt% Na2B4O7 flux method at 1040°C and Δ t = 18°C were ≅ 1.0 × 10−3 mm/h ( a face) and ≅0.3 × 10−3 mm/h ( c face). The β-alumina single crystals grown were bounded by only c [001] and a [100] and were colorless and transparent.  相似文献   

18.
The effect of monovalent cation addition on the γ-Al2O3-to-α-Al2O3 phase transition was investigated by differential thermal analysis, powder X-ray diffractometry, and specific-surface-area measurements. The cations Li+, Na+, Ag+, K+, Rb+, and Cs+ were added by an impregnation method, using the appropriate nitrate solution. β-Al2O3 was the crystalline aluminate phase that formed by reaction between these additives and Al2O3 in the vicinity of the γ-to-α-Al2O3 transition temperature, with the exception of Li+. The transition temperature increased as the ionic radii of the additive increased. The change in specific surface area of these samples after heat treatment showed a trend similar to that of the phase-transition temperature. Thus, Cs+ was concluded to be the most effective of the present monovalent additives for enhancing the thermal stability of γ-Al2O3. Because the order of the phase-transition temperature coincided with that of the formation temperature of β-Al2O3 in these samples, suppression of ionic diffusion in γ-Al2O3 by the amorphous phase containing the added cations must have played an important role in retarding the transition to α-Al2O3. Larger cations suppressed the diffusion reaction more effectively.  相似文献   

19.
The activities of Na2O and K2O dissolved in mixed-alkali Na–K–(β+β")-Al2O3 (NKBA) have been determined by using yttria stabilized zirconia (YSZ) as a solid electrolyte in the following galvanic cells: The approach enables to verify in situ the establishment and maintenance of the β/β"-equilibrium, and to characterize it as a function of the phase composition of NKBA. The results can be expressed as follows:   相似文献   

20.
Mixtures of La2O3 and Al2O3 with various La contents were prepared by co-precipitation from La(NO3)3 and Al(NO3)3 solutions and calcined at 800° to 1400°C. The addition of small amounts of La2O3 (2 to 10 mol%) to Al2O3 gives rise to the formation of lanthanum β-alumina (La 2 O3·11–14Al2O3) upon heating to above 1000°C and retards the transformation of γ-Al2O3 to α-Al2O3 and associated sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号