首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yong Ju Lee 《Thin solid films》2004,446(2):227-231
Aluminum nitride (AlN) thin films were deposited by atomic layer deposition from aluminum chloride (AlCl3) and an ammonia/hydrogen plasma. The most important role of the ammonia/hydrogen plasma was to act as a reducing agent to extract Cl from AlCl3, and to form AlN subsequently. The growth rate was saturated at ∼0.042 nm/cycle, and the thickness was proportional to the number of reaction cycles. Repeating this reaction cycle led to precisely controlled growth. The film properties were analyzed using Auger electron spectroscopy, X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy and time-of-flight elastic recoil detection analysis. The concentration of chlorine and hydrogen impurities was 0.23 and 2.01 at.%, respectively. AlN films showed good anti-oxidation properties when O2 was annealed at 650 °C for 30 min.  相似文献   

2.
Influence of substrate temperature and Zn-precursors on growth rate, crystal structure, and electrical property of undoped ZnO thin films grown by atomic layer deposition (ALD) have been studied. Differences between dimethylzinc (DMeZn) and diethylzinc (DEtZn) used as Zn-precursors were examined. The ZnO films grown using DMeZn showed higher electrical resistivity compared to that grown using DEtZn. However, the higher resistivity in the case of DMeZn was owing to much amount of residual impurities incorporated during the ALD growth.  相似文献   

3.
Jong Hoon Kim 《Thin solid films》2008,516(7):1330-1333
Ga doped ZnO (GZO) thin films were prepared by rf-magnetron sputtering on glass substrate for window heater applications. Electrical and optical properties of these films were analyzed in order to investigate on substrate temperature and rf power dependencies. High quality GZO films with a resistivity of 1.30 × 10− 4 Ω cm and a transparency above 90% in the visible range were able to be formed. GZO films have been patterned on glass substrate as a line heater. This GZO line heater showed the rapid heat radiation property from room temperature to 90 °C for 22 s at the applied voltage of 42 V. These results could provide a possibility to use GZO as effective transparent heaters.  相似文献   

4.
Zinc Oxide films were deposited on quartz substrates by reactive rf magnetron sputtering of zinc target. The effect of substrate temperature on the crystallinity and band edge luminescence has been studied. The films deposited at 300 °C exhibited the strongest c-axis orientation. AFM and Raman studies indicated that the films deposited at 600 °C possess better overall crystallinity with reduction of optically active defects, leading to strong and narrow PL emission.  相似文献   

5.
Highly conducting and transparent ZnO : Al thin films were grown by off-axis rf magnetron sputtering on amorphous silica substrates without any post-deposition annealing. The electrical and optical properties of the films deposited at various substrate temperatures and target to substrate distances were investigated in detail. Optimized ZnO : Al films have conductivity of 2200 S cm-1 and average transmission in the visible range is higher than 85%. The conductivity and mobility show very little temperature dependence.  相似文献   

6.
In transparent conducting impurity-doped ZnO thin films prepared on glass substrates by a dc magnetron sputtering (dc-MS) deposition, the obtainable lowest resistivity and the spatial resistivity distribution on the substrate surface were improved by a newly developed MS deposition method. The decrease of obtainable lowest resistivity as well as the improvement of spatial resistivity distribution on the substrate surface in Al- or Ga-doped ZnO (AZO or GZO) thin films were successfully achieved by inserting a very thin buffer layer, prepared using the same MS apparatus with the same target, between the thin film and the glass substrate. The deposition of the buffer layer required a more strongly oxidized target surface than possible to attain during a conventional dc-MS deposition. The optimal thickness of the buffer layer was found to be about 10 nm for both GZO and AZO thin films. The resistivity decrease is mainly attributed to an increase of Hall mobility rather than carrier concentration, resulting from an improvement of crystallinity coming from insertion of the buffer layer. Resistivities of 3 × 10− 4 and 4 × 10− 4Ω cm were obtained in 100 nm-thick-GZO and AZO thin films, respectively, incorporating a 10 nm-thick-buffer layer prepared at a substrate temperature around 200 °C.  相似文献   

7.
Niobium-aluminate (NbAlO) thin films have been prepared on silicon (100) with different Nb2O5:Al2O3 growth cycle ratio by atomic layer deposition (ALD) technology. The structural, chemical and optical properties of NbAlO thin films are investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). The results show that all the obtained NbAlO films are amorphous and fully oxidized. It is also found that the proportion of components in the NbAlO film can be well-controlled by varying the ALD growth cycles of the independent oxides. Furthermore, the refraction index of the prepared films is observed to increase with an increase of the concentration of Nb in the mixtures.  相似文献   

8.
ZnO films were prepared by atomic layer deposition upon a SiO2 layer on a Si substrate and treated by rapid thermal annealing. The optically-pumped random lasing actions with low threshold values were observed in the ZnO films on SiO2/Si substrates. With the decrease in ZnO film thickness or the increase in post-annealing duration, the stimulated emission shifted toward the shorter wavelength and the lasing threshold increased. The results can be attributed to the inter-diffusion between ZnO and SiO2, which causes the modification of bandgap renormalization in ZnO.  相似文献   

9.
We report on the growth of monocrystalline thin films of ZnSe and ZnO by atomic layer epitaxy by simple reaction between elemental precursors. Structural and optical properties of these films are discussed with reference to the investigations performed with atomic force microscopy, scanning electron microscopy, cathodoluminescence and photoluminescence.  相似文献   

10.
Low-temperature atomic layer deposition (ALD) processes are intensely looked for to extend the usability of the technique to applications where sensitive substrates such as polymers or biological materials need to be coated by high-quality thin films. A preferred film orientation, on the other hand, is often required to enhance the desired film properties. Here we demonstrate that smooth, crystalline ZnO thin films can be deposited from diethylzinc and water by ALD even at room temperature. The depositions were carried out on Si(100) substrates in the temperature range from 23 to 140 °C. Highly c-axis-oriented films were realized at temperatures below ~ 80 °C. The film crystallinity could be further enhanced by post-deposition annealing under O2 or N2 atmosphere at 400-600 °C while keeping the original film orientation intact.  相似文献   

11.
High dielectric constant (high-k) gate dielectric alumina films were prepared with nanoscale thicknesses on p-type silicon substrates by atomic layer deposition (ALD) with alternating pulses of trimethyl aluminum, nitrogen, ozone and nitrogen, and some of them were further thermally annealed. These high-k gate dielectric films were characterized by synchrotron X-ray reflectivity (XR), and the XR data were quantitatively analyzed, providing the following structural parameters of each gate dielectric film: the surface roughness and interfacial roughness, the electron density profile, the number of layers, and the thickness of individual layers. These structural characteristics were then analyzed in detail by considering the ALD processing conditions and post-thermal annealing history.  相似文献   

12.
Quaternary alloyed HfAlTiO thin (~ 4-5 nm) films in the wide range of Ti content have been grown on Si substrates by Atomic Layer Deposition technique, and the effect of both the film composition and the interfacial reactions on the electrical properties of HfAlTiO films is investigated. It is shown that depending on the Ti content, the permittivity and the leakage current density Ileak in HfAlTiO films vary in the range k = 18 ÷ 28 and 0.01-2.4 A cm− 2, respectively. The incorporation of ultra thin SiN interlayer in Al/HfAlTiO/SiN/Si stack gives rise to the sharp (× 103) decrease of the Ileak ~ 6 · 10− 5 A/cm2 at the expense of the rather low capacitance equivalent thickness ~ 0.9 nm.  相似文献   

13.
The aim of this work is to study the effects of deposition temperature and aluminium incorporation on the crystalline properties, orientation and grain size of atomic layer deposited ZnO layers. X-ray diffraction analysis revealed a change in the dominant crystallite orientation with increasing substrate temperature. The most perfect crystal structure and largest grain size was found at 2 at.% aluminium content. Accumulation of compressive strain developed a monotonous increase with the growth temperature. Electric resistivity showed no anisotropy despite the change in the orientation, therefore the dominant conduction mechanism is not grain boundary related.  相似文献   

14.
We investigated that high-energy electron beam irradiation (HEEBI) performed in air at room temperature affected remarkably the properties of Al-doped ZnO (AZO) films grown on SiO2 substrates by radio frequency magnetron sputtering techniques. Hall and photoluminescence measurements revealed that the n-type conductivity was preserved in HEEBI treated films with low dose up to 1015 electrons/cm2 and converted to p-type conductivity with further increase in the amount of dose. X-ray photoelectron spectroscopy confirmed the conversion of conductivity by showing that in-diffusion of O2 from the ambient as well as out-diffusion of Zn from the films took place as a result of HEEBI treatment at high dose of 1016 electrons/cm2. X-ray diffraction analysis indicated that all as-grown films were found to have compressive stress, which was enhanced by HEEBI treatment with the increase of doses. It was also found that worse crystallinity with a smaller grain size was observed in HEEBI treated films with a higher dose, which was correlated with rougher surface morphologies of films observed by an atomic force microscope.  相似文献   

15.
C.H. Tseng  H.C. Chang  C.Y. Hsu 《Vacuum》2010,85(2):263-267
Transparent and conductive Al-doped (2 wt.%) zinc oxide (AZO) films were deposited on inexpensive soda-lime glass substrates by using rf magnetron sputtering at room temperature. This study analyzed the effects of argon sputtering pressure, which varied in the range from 0.46 to 2.0 Pa, on the morphological, electrical and optical properties of AZO films. The only (0 0 2) diffraction peak of the film were observed at 2θ~34.45°, exhibiting that the AZO films had hexagonal ZnO wurtzite structure, and a preferred orientation with the c-axis perpendicular to the substrate. By applying a very thin aluminum buffer layer with the thickness of 2 nm, findings show that the electrical resistivity was 9.46 × 10−4 Ω-cm, and the average optical transmittance in the visible part of the spectra was approximately 81%. Furthermore, as for 10 nm thick buffer layer, the electrical resistivity was lower, but the transmittance was decreased.  相似文献   

16.
Indium tin oxide (ITO) films were deposited on glass substrates by rf magnetron sputtering using a ceramic target (In2O3-SnO2, 90-10 wt%) without extra heating. The post annealing was done in air and in vacuum, respectively. The effects of annealing on the structure, surface morphology, optical and electrical properties of the ITO films were studied. The results show that the increase of the annealing temperature improves the crystallinity of the films, increases the surface roughness, and improves the optical and electrical properties. The transmittance of the films in visible region is increased over 90% after the annealing process in air or in vacuum. The resistivity of the films deposited is about 8.125×10−4 Ω cm and falls down to 2.34×10−4 Ω cm as the annealing temperature is increased to 500°C in vacuum. Compared with the results of the ITO films annealed in air, the properties of the films annealed in vacuum is better.  相似文献   

17.
Low temperature atomic layer deposition of titania thin films   总被引:1,自引:0,他引:1  
This paper presents a comprehensive study of atomic layer deposition of TiO2 films on silicon and polycarbonate substrates using TiCl4 and H2O as precursors at temperatures in the range 80-120 °C. An in-situ quartz crystal microbalance was used to monitor different processing conditions and the resultant films were characterised ex-situ using a suite of surface analytical tools. In addition, the contact angle and wettability of as-deposited and UV irradiated films were assessed. The latter was found to reduce the contact angle from ≥ 80° to < 10°. Finally, the effect of surface pre-treatment on film toughness and adhesion was investigated and the results show a significant improvement for the pre-treated films.  相似文献   

18.
Conditions for deposition of Al-doped ZnO (AZO) films on an organic light-emitting layer with a radio-frequency magnetron sputtering system were optimized to realize high deposition rate and low resistivity of the films. Damage inflicted on the organic layer by depositing the AZO film under the optimized deposition conditions was studied from photoluminescence, UV-Vis and Fourier transform infrared spectroscopy spectra using tris(8-hydroxyquinolinato)aluminium as a model organic compound. We found that damage to the organic layer was lessened by increasing the magnetic field from a normal intensity of 0.02 T to 0.1 T. The damage to the organic layer was further lessened by inserting a grounded grid electrode between a target and the substrate.  相似文献   

19.
Al-doped ZnO thin films were deposited by radio frequency magnetron sputtering using a ZnO target with 2 wt.% Al2O3. The structures and properties of the films were characterized by the thin film X-ray diffraction, high resolution transmission electron microscopy, Hall system and ultraviolet/visible/near-infrared spectrophotometer. The Al-doped ZnO film with high crystalline quality and good properties was obtained at the sputtering power of 100 W, working pressure of 0.3 Pa and substrate temperature of 250 °C. The results of further structure analysis show that the interplanar spacings d are enlarged in other directions besides the direction perpendicular to the substrate. Apart from the film stress, the doping concentration and the doping site of Al play an important role in the variation of lattice parameters. When the doping concentration of Al is more than 1.5 wt.%, part of Al atoms are incorporated in the interstitial site, which leads to the increase of lattice parameters. This viewpoint is also proved by the first principle calculations.  相似文献   

20.
In the present work we report on the monocrystalline growth of (00.1) ZnO films on GaN template by the Atomic Layer Deposition technique. The ZnO films were obtained at temperature of 300 °C using dietylzinc (DEZn) as a zinc precursor and deionized water as an oxygen precursor. High resolution X-ray diffraction analysis proves that ZnO layers are monocrystalline with rocking curve FWHM of the 00.2 peak equals to 0.07°. Low temperature photoluminescence shows a sharp and bright excitonic line with FWHM of 13 meV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号