首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CuInS2 thin films were deposited by chemical spray of aqueous solutions containing CuCl2, InCl3 and thiourea at substrate temperature of 250 °C in air and subjected to annealing at 530 °C in H2S atmosphere. Structure and composition before and after annealing were studied by XRD, EDS, XPS and Raman spectroscopy. As-sprayed films were low-crystalline, showed uniform distribution of elements in film thickness and no oxygen content. For the CuInS2 films deposited from the solutions with [Cu2+] / [In3+] = 1.0 and 1.1, H2S treatment for 30 min increased the chalcopyrite content up to 73% and 51%, respectively. CuXS phase in sprayed CIS films promotes the crystallite growth but retards the formation of chalcopyrite phase during H2S treatment.  相似文献   

2.
Cheng-Hsing Hsu 《Thin solid films》2009,517(17):5061-1132
Zirconium tin titanium oxide doped 1 wt.% ZnO thin films on n-type Si substrate were deposited by rf magnetron sputtering at a fixed rf power of 300 W, a substrate temperature of 450 °C, a deposition pressure of 5 mTorr and an Ar/O2 ratio of 100/0 with various annealing temperatures and annealing times. Electrical properties and microstructures of 1 wt.% ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by rf magnetron sputtering on n-type Si(100) substrates at different annealing temperatures (500 °C-700 °C) and annealing times (2 h-6 h) have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were sensitive to the treatment conditions such as annealing temperature and annealing time. At an annealing temperature of 600 °C and an annealing time of 6 h, the ZnO-doped (Zr0.8Sn0.2)TiO4 thin films possess a dielectric constant of 46 (at f = 10 MHz), a dissipation factor of 0.059 (at f = 10 MHz), and a low leakage current density of 3.8 × 10− 9 A/cm2 at an electrical field of 1 kV/cm.  相似文献   

3.
In the Cu-Fe-O phase diagram, delafossite CuFeO2 is obtained for the CuI oxidation state and for the Cu/Fe = 1 ratio. By decreasing the oxygen content, copper/spinel oxide composite can be obtained because of the reduction and the disproponation of cuprous ions. Many physical properties as for instance, electrical, optical, catalytic properties can then be affected by the control of the oxygen stoichiometry.In rf-sputtering technique, the bombardment energies on the substrate can be controlled by the deposition conditions leading to different oxygen stoichiometry in the growing layers.By this technique, thin films have been prepared from two ceramic targets: CuFeO2 and CuO + CuFe2O4. We thus synthesized either Cu0/CuxFe1−xO4 nanocomposites thin films with various Cu0 quantities or CuFeO2-based thin films.Two-probes conductivity measurements were permitted to comparatively evaluate the Cu0 content, while optical microscopy evidenced a self-assembly phenomenon during thermal annealing.  相似文献   

4.
A series of Ni1−xCuxFe2O4 (0 ≤ x ≤ 0.5) spinels were synthesized employing sol-gel combustion method at 400 °C. The decomposition process was monitored by thermal analysis, and the synthesized nanocrystallites were characterized by X-ray diffraction, transmission electron microscopy, infra-red and X-ray photoelectron spectroscopy. The decomposition process and ferritization occur simultaneously over the temperature range from 280 °C to 350 °C. TEM indicates the increase of lattice parameter and particle size with the increase of copper content in accordance with the XRD analysis. Cu2+ can enter the cubic spinel phase and occupy preferentially the B-sites within x = 0.3, and redundant copper forms CuO phase separately. A broadening of the O 1s region increases with the increment of copper content compared to pure NiFe2O4, showing different surface oxygen species from the spinel and CuO. Cu2+ substitution favors the occupancy of A-sites by Fe3+.  相似文献   

5.
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 °C and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 °C, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.  相似文献   

6.
Lead germanate-silicate (Pb5Ge2.85Si0.15O11) ferroelectric thin films were successfully fabricated on Pt/Ti/SiO2/(100)Si substrates by the sol-gel process. The thin films were fabricated by multi-coating at preheating temperatures of 350 and 450 °C. After annealing the thin films at 600 °C, the films exhibited c-axis preferred orientation. The degree of c-axis preferred orientation of the thin films preheated at 350 °C was higher than that of films preheated at 450 °C. Grain growth was influenced by the annealing time. The thin films exhibited a well-saturated ferroelectric P-E hysteresis loop when preheated at 350 °C and annealed at 600 °C for 1.5 h. The values of the remanent polarization (Pr) and the coercive field (Ec) were approximately 2.1 μC/cm2 and 100 kV/cm, respectively.  相似文献   

7.
Ion implantation-induced nanoclusters were synthesized in reactive sputtered Ta2O5 films by Ge+ implantation and subsequent annealing. The effects of ion fluence and post-implantation thermal treatment on the kinetics of the nanoclustering were investigated. Ge+ ions with energy of 40 keV and fluences of 5 × 1015, 1 × 1016 and 5 × 1016 cm 2 were implanted in the Ta2O5 layers at room temperature. The samples were thermally treated by rapid thermal annealing in vacuum at 700 °C and 1000 °C for 30, 60 and 180 s. Structural studies of all samples were done by Cross-sectional Transmission Electron Microscopy in diffraction and phase contrast mode. Under optimized conditions (high implantation fluence, subsequent annealing) nanoclusters are formed around the projected ion range of the implanted Ge+ ions. The structure of the implanted Ta2O5 matrix changes from amorphous to orthorhombic when the annealing was performed at 1000 °C. Although the Ta2O5 matrix crystallizes, no evidence is obtained for crystallization of the embedded nanoclusters even after annealing at 1000 °C.  相似文献   

8.
Polycrystalline CaCu3Ti4O12 thin films were deposited on Pt(111)/Ti/SiO2/Si substrates using radio frequency magnetron sputtering. The phase formation and the physical quality of the films were crucially dependent on the substrate temperature and oxygen partial pressure. Good quality films were obtained at a substrate temperature of 650 °C and 4.86 Pa total pressure with 1% O2. The dielectric constant (∼ 5000 at 1 kHz and 400 K) of these films was comparable to those obtained by the other techniques, eventhough, it was much lower than that of the parent polycrystalline ceramics. For a given temperature of measurements, dielectric relaxation frequency in thin film was found to be much lower than that observed in the bulk. Also, activation energy associated with the dielectric relaxation for the thin film (0.5 eV) was found to be much higher than that observed in the bulk ceramic (0.1 eV). Maxwell-Wagner relaxation model was used to explain the dielectric phenomena observed in CaCu3Ti4O12 thin films and bulk ceramics.  相似文献   

9.
Kaibin Ruan 《Thin solid films》2008,516(16):5248-5251
(Bi3.2La0.4Nd0.4)Ti3O12 (BLNT) thin films were prepared on Pt/Ti/SiO2/Si substrates by using chemical solution deposition technique, and the effects of annealing temperatures in the range of 550-750 °C on structure and electrical properties of the thin films were investigated. X-ray diffraction analysis shows that the thin films have a bismuth-layered perovskite structure with preferred (117) orientation. The surface morphology observation by field-emission scanning electron microscopy confirms that films are dense and smooth with uniformly distributed grains. The grain size of the thin films increases with increasing annealing temperature; meanwhile, the structural distortion of the thin films also increases. It was demonstrated that the thin films show good electrical properties. The dielectric constant and dielectric loss are 191 and 0.028, respectively, at 10 kHz for the thin film annealed at 600 °C, and the 2Pr value of the thin film annealed at 700 °C is 20.5 μC/cm2 at an electric field of 500 kV/cm.  相似文献   

10.
Eu3+ (2.5 at.%) and Tb3+ (0.005-0.01 at.%) co-doped gadolinium and yttrium oxide (Gd2O3 and Y2O3) powders and films have been prepared using the sol-gel process. High density and optical quality thin films were prepared with the dip-coating technique. Gadolinium (III) 2,4-pentadionate and yttrium (III) 2,4-pentadionate were used as precursors, and europium and terbium in their nitrate forms were used as doping agents. Chemical and structural analyses (infrared spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy) were conducted on both sol-gel precursor powders and dip-coated films. The morphology of thin films heat-treated at 700 °C was studied by means of atomic force microscopy. It was shown that the highly dense and very smooth films had a root mean roughness (RMS) of 2 nm ± 0.2 (A = 0.0075 Tb3+) and 24 nm ± 3.0 (B = 0.01 Tb3+). After treatment at 700 °C, the crystallized films were in the cubic phase and presented a polycrystalline structure made up of randomly oriented crystallites with grain sizes varying from 20 to 60 nm. The X-ray induced emission spectra of Eu3+- and Tb3+-doped Gd2O3 and Y2O3 powders showed that Tb3+ contents of 0.005, 0.0075 and 0.01 at.% affected their optical properties. Lower Tb3+ concentrations (down to 0.005 at.%) in both systems enhanced the light yield.  相似文献   

11.
Tantalum and niobium oxide optical thin films were prepared at room temperature by plasma-enhanced chemical vapor deposition using tantalum and niobium pentaethoxide (M(OC2H5)5) precursors. We studied the evolution of their optical and microstructural properties as a result of annealing over a broad temperature range from room temperature up to 900 °C. The as-deposited films were amorphous; their refractive index, n, and extinction coefficient, k, at 550 nm were n = 2.13 and k < 10− 4 for Ta2O5, and n = 2.24 and k < 10− 4 for Nb2O5. The films contained a small amount of residual carbon (∼ 2-6 at.%) bonded mostly to oxygen. During annealing, the onset of crystallization was observed at approximately TC1 = 650 °C for Ta2O5 and at TC1 = 450 °C for Nb2O5. Upon annealing close to T1 (300 °C for Nb2O5 and 400 °C for Ta2O5), n at 550 nm decreased by less than 1%. This was correlated with the decrease of carbon content, as suggested by Fourier transform infrared spectroscopy, elastic recoil detection and static secondary ion mass spectroscopy (SIMS) results. During annealing, we observed phase transition from the δ- (hexagonal) phase to the L- (orthorhombic) phase between 800 °C and 900 °C for Ta2O5, and between 600 °C and 700 °C for Nb2O5. The structural changes were also marked by silicon diffusion from the substrate into the oxide layer at annealing temperatures above 500 °C for Ta2O5 and above 400 °C for Nb2O5. As a consequence of oxygen, silicon and metal interdiffusion, the interface between the Si substrate and the metal oxide (Ta2O5 or Nb2O5) is characterized by its broadening, well documented by spectroscopic ellipsometry and SIMS data.  相似文献   

12.
Yibin Li  Weidong Fei  Cong Xu 《Thin solid films》2007,515(23):8371-8375
Nd-substituted SrBi2Ta2O9 (SNBT) thin films are sputtered on Pt/Ta/SiO2/Si substrates. X-ray diffraction and x-ray photoelectron spectroscopy studies indicate that Nd3+ is substituted into the bismuth layered perovskite structure, preferentially at the Sr2+ site. The annealed thin film is polycrystalline with plate/needle-like grain microstructure. Secondary ion mass spectrometry results show that elements in SNBT thin film homogeneously distribute along film depth and interfacial diffusion takes place during post annealing. The Nd substitution leads to enhanced remnant polarization (2Pr = 18 μC/cm2) and reduced coercivity (2Ec = 64 kV/cm) at 180 kV/cm measured at 25 °C. After 1010 switching cycles, around 9% remnant polarization is decreased.  相似文献   

13.
We propose and demonstrate Metal-Oxide-Semiconductor structures comprising Al2O3-TiO2 nanolaminate and AlTiO films. Composition, structural and electrical characteristics were studied in detail and compared to TiO2 thin film-based structures. All dielectric films were evaporated using an electron beam gun (EBG) system on unheated p-Si substrate without adding O2. MOS structures were investigated in detail before and after annealing at up to 950 °C in O2 and N2 + O2 environments. The nanolaminate films remain in an amorphous state after annealing at 950 °C. The smallest quantum mechanical corrected equivalent oxide thickness measured was ∼1.37 nm. A large reduction of the leakage current density to 1.8 × 10− 8 A/cm2 at an electric field of 2 MV/cm was achieved by the annealing process.  相似文献   

14.
Bi2Sr2CaCu2Ox glass with Cu+/(Cu+ + Cu2+) = 0.76 was prepared by using a conventional melt-quenching method, and crystalline phases and grain orientations at the surface of superconducting glass-ceramics obtained by annealing at various atmospheres were examined. The grain orientation of the Bi2Sr2CaCu2Ox phase (low-T c phase) at the surface was severely affected by oxygen partial pressure in annealing. The favourable grain orientation, in which the plate-like grains of the low-T c phase are oriented parallel to the surface plane, was first established in the samples obtained through a newly developed two-step annealing method: first annealing at 780°C in oxygen and second annealing at above 750°C in nitrogen. It was concluded that the favourable grain orientation of the low-T c phase at the surface occurred due to the formation of a liquid phase in nitrogen.  相似文献   

15.
Pure and yttrium substituted CaCu3Ti4 − xYxO12 − x / 2 (x = 0, 0.02, 0.1) thin films were prepared on boron doped silica substrate employing chemical solution deposition, spin coating and rapid thermal annealing. The phase and microstructure of the sintered films were examined using X-ray diffraction and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using electrochemical impedance spectroscopy. Highly ordered polycrystalline CCTO thin film with bimodal grain size distribution was achieved at a sintering temperature of 800 °C. Yttrium doping was found to have beneficial effects on the dielectric properties of CCTO thin film. Dielectric parameters obtained for a CaCu3Ti4 − xYxO12 − x / 2 (x = 0.02) film at 1 KHz were k ∼ 2700 and tan δ ∼ 0.07.  相似文献   

16.
The Cu2O thin films were prepared on quartz substrate by reactive direct current magnetron sputtering. The influences of oxygen partial pressure and gas flow rate on the structures and properties of deposited films were investigated. Varying oxygen partial pressure leads to the synthesis of Cu2O, Cu4O3 and CuO with different microstructures. At a constant oxygen partial pressure of 6.6 × 10− 2 Pa, the single Cu2O films can be obtained when the gas flow rate is below 80 sccm. The as-deposited Cu2O thin films have a very high absorption in the visible region resulting in the visible-light induced photocatalytic activity.  相似文献   

17.
In this study, CuFeO2 thin films were deposited onto quartz substrates using a sol-gel and a two-step annealing process. The sol-gel-derived films were annealed at 500 °C for 1 h in air and then annealed at 600 to 800 °C for 2 h in N2. X-ray diffraction patterns showed that the annealed sol-gel-derived films were CuO and CuFe2O4 phases in air annealing. When the films were annealed at 600 °C in N2, an additional CuFeO2 phase was detected. As the annealing temperature increased above 650 °C in N2, a single CuFeO2 phase was obtained. The binding energies of Cu-2p3/2, Fe-2p3/2, and O-1s were 932.5 ± 0.1 eV, 710.3 ± 0.2 eV and 530.0 ± 0.1 eV for CuFeO2 thin films. The chemical composition of CuFeO2 thin films was close to its stoichiometry, which was determined by X-ray photoelectron spectroscopy. Thermodynamic calculations can explain the formation of the CuFeO2 phase in this study. The optical bandgap of the CuFeO2 thin films was 3.05 eV, which is invariant with the annealing temperature in N2. The p-type characteristics of CuFeO2 thin films were confirmed by positive Hall coefficients and Seebeck coefficients. The electrical conductivities of CuFeO2 thin films were 0.28 S cm− 1 and 0.36 S cm− 1 during annealing at 650 °C and 700 °C, respectively, in N2. The corresponding carrier concentrations were 1.2 × 1018 cm− 3 (650 °C) and 5.3 × 1018 cm− 3 (700 °C). The activation energies for hole conduction were 140 meV (650 °C) and 110 meV (700 °C). These results demonstrate that sol-gel processing is a feasible preparation method for delafossite CuFeO2 thin films.  相似文献   

18.
P-type transparent conductive oxides have potential applications in photovoltaics, transparent electronics, and organic optoelectronics. In this paper, results are presented on the synthesis of Cu2SrO2 thin films, a p-type transparent conducting oxide by a sol-gel route. Cu(II)methoxide and Sr-metal dissolved in anhydrous isopropanol were used as precursor for the sol preparation. For potassium (K) doping, K-acetate dissolved in anhydrous isopropanol was used as the precursor. Films were spin-coated onto substrates and partially pyrolysed in air at 225°C. After partial pyrolization, a two stage annealing sequence was used to achieve the final film microstructure and composition. Although combinations of oxygen pressure, annealing time, and annealing temperature were used to obtain phase pure Cu2SrO2 thin films, X-ray diffraction consistently showed the presence of Cu2O as a second phase with Cu2SrO2−the desired phase. Microstructural studies showed similar phase separation in the films and confirmed the microcrystalline nature. The best conductivities obtained for the undoped and 1% K-doped films were 2 × 10− 3 and 1.2 × 10− 2 S/cm, respectively. Both films showed a broad optical absorption edge in the visible range.  相似文献   

19.
Ashvani Kumar 《低温学》2006,46(10):749-758
Ultrasonic spray pyrolysis technique has been used to deposit both in situ and ex situ high temperature superconducting films (HTSC) of Y1Ba2Cu3Ox(YBCO) and Bi2Sr2CaCu2Ox (BSCCO) compounds over various substrates. Nitrate precursor solutions are used to deposit films of ∼10 μm thickness. Both low temperature spray with substrate temperature Ts < 500 °C and high temperature deposition with Ts = 550-900 °C are carried out. Superconducting properties of these films are observed to vary with various parameters such as concentration of spray solution, deposition temperature and nature of substrate and annealing process. Best quality films show Tc (R = 0) of 89 K and Jc of ∼4 × 104 A/cm2 at 77 K and ∼ 105 A/cm2 at 20 K. X-ray diffraction pattern reveals that the films are textured along c-axis. Successful attempt has been made to deposit in situ superconducting films over polycrystalline Ag for coated conductor applications. Various deposition and annealing conditions are optimized to control the diffusion of Ag from substrate to film, which otherwise can segregate into the grain boundaries and make the films non-superconducting.  相似文献   

20.
Cu2O thin films were first deposited using magnetron sputtering at 200 °C. The samples produced were then annealed by a rapid thermal annealing (RTA) system at 550 °C in a protective atmosphere with or without the addition of oxygen. After annealing, various Cu2O and CuO films were formed. These films were characterized, as a function of oxygen concentration in RTA, using UV-VIS photometer, four-point probe, and Hall measurement system. The results show that these Cu2O thin films annealed at 550 °C with more than 1.2% oxygen added in the protective argon atmosphere would transform into the CuO phase. Apparently, the results of RTA are sensitive to the amount of oxygen added in the protective atmosphere. The resistivity of these Cu2O thin films decreases with the increase in the oxygen amount in the annealing atmosphere, most likely due to the increase in carrier mobility. In addition, Cu2O/ZnO (doped with AlSc) junctions were produced at 200 °C and annealed. The rectifying effect of P-N junction disappeared after annealing, probably due to the damage of p-n interface, which directly causes current leakage at the junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号