首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transparent thin films of Ga-doped ZnO (GZO), with Ga dopant levels that varied from 0 to 7 at.%, were deposited onto alkali-free glass substrates by a sol-gel process. Each spin-coated film was preheated at 300 °C for 10 min, and then annealed at 500 °C for 1 h under air ambiance. The effects of Ga dopant concentrations on crystallinity levels, microstructures, optical properties, and electrical resistivities of these ZnO thin films were systematically investigated. Photoluminescence spectra of GZO thin films were examined at room temperature. XRD results revealed that the undoped ZnO thin films exhibited a preferred orientation along the (002) plane and that the ZnO thin films doped with Ga showed degraded crystallinity. Experimental results also showed that Ga doping of ZnO thin films could markedly decrease surface roughness, improve transparency in the visible range, and produce finer microstructures than those of undoped ZnO thin films. The most promising films for transparent thin film transistor (TTFT) application produced in this study, were the 3 and 5 at.% Ga-doped ZnO thin films, both of which exhibited an average transmittance of 90.6% and an RMS roughness value of about 2.0 nm.  相似文献   

2.
The paper presents the properties of zinc oxide thin films deposited on glass substrate via dip-coating technique. Zinc acetate dehydrate, ethanol and monoethanol amine were used as starting materials and N2 gas was used as thermal annealing atmosphere for film crystallization. The effect of withdrawal speed on the crystalline structure, morphology, zinc and nitrogen chemical states, optical, electrical and gas-sensing properties of the thin films has been investigated using X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, optical transmittance and photoreduction-ozone reoxidation data.  相似文献   

3.
Keh-moh Lin 《Thin solid films》2007,515(24):8601-8604
In this study, transparent conductive Al-doped ZnO films were deposited by the sol-gel method. The growth mechanism of the film microstructure and its influences on the electrical properties were discussed. It was found that dopant and solution concentration affected the nucleation behavior considerably. The preferred growth orientation of ZnO crystallite was restrained by the film itself. The repeated dip-coating processes did not enable the crystallite size to grow obviously, but it could allow crystallite and atoms to find the suitable positions and therefore led to a better film quality. Consequently, this process led to an electrical resistivity of 7.08 × 10− 3 Ω cm and a high transmittance of over 80% in the visible region. The best sample was obtained for an Al concentration of 1 at.% and at 600 °C for pre- and post-heat treatment.  相似文献   

4.
Zinc oxide thin films, with thicknesses between ∼ 20 and 450 nm, were prepared by spin-coating a sol-gel precursor solution (zinc acetate dihydrate and monoethanolamine in an isopropanol solvent) onto glass substrates, followed by heat treatment at temperatures through 773 K. At 298 and 373 K, the films exhibited the structure of a lamellar ZnO precursor, Layered Basic Zinc Acetate (LBZA). At higher temperatures, LBZA released intercalated water and acetate groups and dehydroxylated to form zinc oxide nanograins with wurtzite structure, which were preferentially oriented in the c-axis direction. Both the degree of the films' c-axis orientation and the topography of their surfaces varied with heat treatment and precursor concentration. For films calcined at 773 K, a minimum of micron-scale surface wrinkles coincided with a maximum in c-axis preference at intermediate concentrations, suggesting that release of mechanical stress during densification of thicker films may have disrupted the ordering process that occurs during heat treatment.  相似文献   

5.
Zinc oxide (ZnO) thin films have attracted great attention in recent years due to their unique piezoelectric and piezooptic properties, making them suitable for various microelectronics and optoelectronics applications, such as surface acoustic wave devices, optical fibers, solar cells etc. ZnO is a semiconductor with a band gap of 3.3 eV and a large exciton binding energy of 60 meV. Undoped ZnO exhibits intrinsic n-type conductivity and it enables achieving high electron concentration. However, it may be doped to obtain low resistivity p-type thin films. Among group V of the periodic table, nitrogen is used as a popular p-type dopant due to its small atomic size. However, it is difficult to achieve p-type conduction in ZnO films due to the low solubility of nitrogen and its high intensity in self compensating process upon doping.Sputtering techniques enable us to form dense and homogeneous films due to the relatively high energy of the sputtered atoms. Thus we can grow high quality ZnO films with c-axis orientation, low growth temperature, high deposition rate, large area deposition, and availability in various growths ambient. In this work, the zinc oxide films were prepared using various DC sputtering methods in an atmosphere of pure argon and an atmosphere of mixed argon with nitrogen. Optical and electrical properties of the films were investigated.  相似文献   

6.
ZnO thin films were fabricated by a sol-gel method using Zn(CH3COO)2·2H2O as starting material in order to prepare an acetone gas sensor. A homogeneous and stable solution was prepared by dissolving the zinc acetate in a solution of ethanol and monoethanolamine. The sol-gel solution is coated on alumina substrates with various thicknesses by spin coating technique and heat treated to grow crystalline ZnO thin films. The effect of thickness on physical and electrical properties of as deposited ZnO thin films has been studied. The as deposited ZnO thin films were characterized by X-ray diffraction spectroscopy, field emission scanning electron microscopy and atomic force microscopy. The root mean square surface roughness factors increase with thickness of the films and found 3.9, 6.6, 9.0, and 11.28 nm for 80-, 220-, 450- and 620-nm-thin films respectively. The activation energies of the films are calculated from the resistance temperature characteristics. The sensitivities of the ZnO films towards the acetone gas were determined at an operating temperature of 200 °C. The sensitivity towards acetone vapor is strongly depending on surface morphology of the ZnO thin films.  相似文献   

7.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

8.
Nanocrystalline CdxZn1 − xO thin films with different Cd volume ratios in solution (x = 0, 0.25, 0.50, 0.75 and 1) have been deposited on glass substrate by sol-gel dip-coating method. The as-deposited films were subjected to drying and annealing temperatures of 275 °C and 450 °C in air, respectively. The prepared films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy and dc-electrical measurements. The results show that the samples are polycrystalline and the crystallinity of the films enhanced with x. The average grain size is in the range of 20-53 nm. The atomic percent of Cd:Zn was found to be 9.50:1.04, 6.20:3.77 and 4.42:6.61 for x = 0.75, 0.50 and 0.25, respectively. It was observed that the transmittance and the band gap decreased as x increased. All the films exhibit n-type electrical conductivity. The resistivity (ρ) and mobility (μ) are in the range of 3.3 × 102 − 3.4 × 10− 3 Ω cm, and 1.5 − 45 cm2 V− 1 s− 1 respectively. The electron density lies between 1.26 × 1016 and 0.2 × 1020 cm− 3.  相似文献   

9.
Li-Yu Lin 《Thin solid films》2009,517(5):1690-1266
The tribological behavior of zinc oxide (ZnO) films grown on glass and silicon (100) substrates by sol-gel method was investigated. Particularly, the as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature. Crystal structural and surface morphology of the films were measured by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD patterns and AFM images indicated that the crystallinity and grain size of the films were enhanced and increased, respectively, with temperature. The tribological behavior of films was evaluated by sliding the ZnO films against a Si3N4 ball under 0.5 gf normal load using a reciprocating pin-on-plate tribo-tester. The wear tracks of the films were measured by AFM to quantify the wear resistance of the films. The results showed that the wear resistance of the films could be improved by the annealing process. The wear resistance of the films generally increased with annealing temperature. Specifically, the wear resistance of the films was significantly improved when the annealing temperature was higher than 550° C. The increase in the wear resistance is attributed to the increase in hardness and modulus of the film with annealing temperature.  相似文献   

10.
High density TiO2 nanotube film with hexagonal shape and narrow size distribution was fabricated by templating ZnO nanorod array film and sol-gel process. Well-aligned ZnO nanorod array films obtained by aqueous solution method were used as template to synthesize ZnO/TiO2 core-shell structure through sol-gel process. Subsequently, TiO2 nanotube array films survived by removing the ZnO nanorod cores using wet-chemical etching. Polycrystalline anatase TiO2 nanotube films were ∼ 1.5 μm long and ∼ 100 nm in inter diameter with a wall thickness of ∼ 10 nm.  相似文献   

11.
报道了以钼粉为原料,采用溶胶凝胶技术和旋转镀膜方法,制备MoO3纳米薄膜。采用TG-DSC分析、X射线衍射仪(XRD)、原子力显微镜(AFM)、红外光谱仪等方法分析了薄膜的特性。研究结果表明MoO3薄膜具有纳米颗粒结构,热处理使得MoO3颗粒长大,且表面平整度降低;XRD分析显示,250℃热处理的MoO3粉末已结晶(为α-MoO3),且沿(Ok0)方向取向强烈;随热处理温度的升高,MoO3微结构发生了相应的变化,Mo——O(2)、Mo——O(3)键振动吸收增强,且峰位移动。这些变化归因于热处理导致的MoO3颗粒形状、团聚状态的变化以及应变键的产生。  相似文献   

12.
In this paper, we report a buffering method of improving the quality of ITO thin films on glass by r.f. magnetron sputtering. By applying a ZnO buffer before the ITO deposition in the same run of sputtering, ITO films showed single (111)-oriented highly textured structure, while ITO films showed mixed-oriented polycrystalline structure on bare glass. A design of experiment was taken out to minimize the resistivity of ITO films in the deposition parameter space (oxygen ratio, total gas pressure, and temperature). Resistance measurements showed that the ITO films with ZnO buffers had a remarkable 50% decrease of resistivity comparing to those without ZnO buffers at optimized deposition condition. Room-temperature Hall effect measurements showed that the decrease in resistivity comes from a large increase of mobility and a slight increase of carrier density after forming gas annealing. The ZnO/glass may be a good alternative substrate to bare glass for producing high quality ITO films for advanced electro-optic applications.  相似文献   

13.
ZnO nanorod-bundle thin films have been synthesized by a simple self-assembly method with the aid of F127 (EO106-PO70-EO106) triblock copolymer. Their morphologies and crystal structures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM). SEM results showed that films were composed of a lot of bundles, which comprised nanorods with the diameter of about 10 nm. The possible formation mechanism of ZnO nanorod-bundle structures is proposed. Gas-sensing property of thin films, to alcohol, was also detected. It was also found that the sensitivity, to 100 ppm alcohol, of ZnO nanorod-bundle thin films was higher than that of ZnO nanoparticle thin films. The results showed that the triblock copolymer, served as the surfactants, could effectively control the morphologies and the aspect ratio of nano-ZnO, and then improve its gas-sensing property.  相似文献   

14.
Al-doped ZnO thin films were deposited by radio frequency magnetron sputtering using a ZnO target with 2 wt.% Al2O3. The structures and properties of the films were characterized by the thin film X-ray diffraction, high resolution transmission electron microscopy, Hall system and ultraviolet/visible/near-infrared spectrophotometer. The Al-doped ZnO film with high crystalline quality and good properties was obtained at the sputtering power of 100 W, working pressure of 0.3 Pa and substrate temperature of 250 °C. The results of further structure analysis show that the interplanar spacings d are enlarged in other directions besides the direction perpendicular to the substrate. Apart from the film stress, the doping concentration and the doping site of Al play an important role in the variation of lattice parameters. When the doping concentration of Al is more than 1.5 wt.%, part of Al atoms are incorporated in the interstitial site, which leads to the increase of lattice parameters. This viewpoint is also proved by the first principle calculations.  相似文献   

15.
ZnxNi1 − xO thin films were prepared by sol-gel spin coating method onto glass substrates in combination with annealing process. Effect of zinc content on the structural, optical and ozone-induced coloration properties of as-prepared films was investigated by X-ray diffraction, field emission-scanning electron microscope, atomic force microscopy and UV-VIS spectrophotometer, respectively. X-ray diffraction results reveal that the structures of all films are still cubic NiO structure. Average grain size of ZnxNi1 − xO film increases with increasing annealing temperature and its crystallization is strongly affected by Zn content. Coloration of the films was obtained after UV/ozone exposure due to a presence of ozone-induced hydroxyl groups. Significant enhancement of coloration efficiency of the films is achieved as content of Zn increases.  相似文献   

16.
ZnO films were prepared on glass substrates by a sol-gel dip-coating technique. The films showed a polycrystalline phase without any preferable orientation. By decreasing the withdrawal speed, the surface of the ZnO films became denser because of a decrease in particle sizes. This reduces the distance between the supported solids under the water droplet that could increase the degree of the pinning effects, and leads to increase the water contact angle. Furthermore, these prepared ZnO films showed photocatalytic properties indicating by photocatalytic degradation of methylene blue under a blacklight illumination. By increasing the calcination temperature, the water contact angle value decreases due to the grain coalescence which increases the gap between these supported solids. On the other hand, this enhances the photocatalytic activity caused by the improving of the crystallinity and the surface roughness of ZnO thin films with an increase in calcination temperature.  相似文献   

17.
Fabrication of highly oriented (002) ZnO film on glass by sol-gel method   总被引:1,自引:0,他引:1  
In this study high quality (002) ZnO films were deposited on glass substrate by a sol-gel spin coating process. The as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature in particular. The chemical composition of the precursor sol and the intermediates produced in the films heating process were analyzed by thermo gravimetric analysis/differential thermal analysis (TGA/DTA). The microstructure and its optical properties of ZnO films were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis) and photoluminescence. TGA/DTA showed that a significant weight loss occurred at around 200-300 °C and the weight stabilized at 300 °C. An extremely sharp (002) diffracted peak in XRD patterns indicated the high preference in crystallinity of these films. FESEM micrographs revealed that the films were filled with particulates with size ranging from 10 to 25 nm as post annealing temperature increased from 400 to 500 °C and turned into porous films at 600 °C. UV-Vis has shown that the films were highly transparent under visible light and had a sharp absorption edge in the ultraviolet region at 380 nm. The measured optical band gap values of the ZnO thin films were around 3.24-3.26 eV. Photoluminescence spectra revealed a strong UV emission centered at about 390 nm corresponding to the near-band-edge emission with a weak defect-related emission at about 520 nm. The intensity of UV emission increased with the annealing temperature. This may be attributed to a higher quality ZnO film while annealed at higher temperature.  相似文献   

18.
The influence of doping on the morphology, physical and electrical properties of zinc oxide produced by the sol-gel method was examined. Undoped zinc oxide was observed to form relatively porous films. Addition of an Al dopant influenced the sheet resistance, but did not result in a change in morphology, examined by atomic force microscopy when compared to undoped films. In the case of electrical measurements, undoped ZnO films were extremely resistive. A minimum dopant concentration of 2 at.%. Al was required to produce materials which were more conductive, as observed by sheet resistance measurements, which were shown to vary with annealing temperature. The versatile nature of sol-gel processing was demonstrated by selective ink-jet deposition of sol-gel droplets which were annealed to form oxide materials.  相似文献   

19.
Hao Tang  Bin Peng  Wanli Zhang 《Thin solid films》2010,518(12):3342-8980
Hexagonal barium ferrite (BaM) thin films have been prepared by sol-gel technique involving spin coating and annealing in air. Different ratios of Ba to Fe, different annealing temperatures and different annealing time are explored. X-ray diffraction shows that the films have been epitaxially grown on the sapphire (001) plane with [100] direction of BaM parallel to [110] of Al2O3, and the c-axes of them being parallel, while magnetic measurements show magnetically anisotropic loops with in-plane and out-of-plane intrinsic coercivity of 87.5 kA/m and 230.8 kA/m, respectively.  相似文献   

20.
T. Kumpika 《Thin solid films》2008,516(16):5640-5644
ZnO nanoparticle thin films were deposited on quartz substrates by a novel sparking deposition which is a simple and cost-effective technique. The sparking off two zinc tips above the substrate was done repeatedly 50-200 times through a high voltage of 10 kV in air at atmospheric pressure. The film deposition rate by sparking process was approximately 1.0 nm/spark. The ZnO thin films were characterized by X-ray diffraction, Raman spectroscopy, UV-vis spectrophotometry, and ionoluminescence at room temperature. The two broad emission peaks centered at 483 nm (green emission) and 650 nm (orange-red emission) were varied after two-step annealing treatments at 400-800 °C. Moreover, the electrical resistivity of the films was likely to be proportional to the peak intensity of the orange-red emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号