首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The unique electrochemiluminescence (ECL) behavior of tris(bipyridine) ruthenium(II) (Ru(bpy)32+) immobilized in a gold/Nafion/Ru(bpy)32+ composite material was investigated. In this composite, the Ru(bpy)32+ ECL was found mainly occurred at 0-0.4 V during the cathodic scan process and the ECL peak was at about 0.1 V, which was quite different to the reported Ru(bpy)32+ ECL. Similar to the generally observed Ru(bpy)32+ ECL, the present ECL also could be enhanced by tri-n-propylamine (TPA). It is also unique that in the presence of TPA, another ECL peak at about 0.38 V occurred. These two ECL peak potentials all could be used as characteristic potential for the ECL determination of TPA.  相似文献   

2.
Abstract

The magnetic orientation of single-walled carbon nanotubes (SWNTs) or the SWNT composites wrapped with polymer using poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene] (MEHPPV) as the conducting polymer were examined. The formation of SWNT/MEHPPV composites was confirmed by examining absorption and fluorescence spectra. The N,N-dimethylformamide solution of SWNT/MEHPPV composites or the aqueous solution of the shortened SWNTs was introduced dropwise onto a mica or glass plate. The magnetic processing of the composites or the SWNTs was carried out using a superconducting magnet with a horizontal direction (8 T). The AFM images indicated that the SWNT/MEHPPV composites or the SWNTs were oriented randomly without magnetic processing, while with magnetic processing (8 T), they were oriented with the tube axis of the composites or the SWNTs parallel to the magnetic field. In polarized absorption spectra of SWNT/MEHPPV composites on glass plates without magnetic processing, the absorbance due to semiconducting SWNT in the near-IR region in horizontal polarized light was almost the same as that in vertical polarized light. In contrast, with magnetic processing (8 T), the absorbance due to semiconducting SWNT in the horizontal polarization direction against the direction of magnetic field was stronger than that in the vertical polarization direction. Similar results were obtained from the polarized absorption spectra for the shortened SWNTs. These results of polarized absorption spectra also support the magnetic orientation of the SWNT/MEHPPV composites or the SWNTs. On the basis of a comparison of the composites and the SWNTs alone, the magnetic orientation of SWNT/MEHPPV composites is most likely ascribable to the anisotropy in susceptibilities of SWNTs.  相似文献   

3.
A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, [Ru(bpy)3]2+ (bpy = 2,2’-bipyridyl), was immobilized in H-CPPs via electrostatic interactions. The intrinsic properties of [Ru(bpy)3]2+ were well retained. The resulting Rucontaining hollow polymers exhibited excellent catalytic activity, enhanced stability, and good recyclability when used for the oxidative hydroxylation of 4-methoxyphenylboronic acid to 4-methoxyphenol under visible-light irradiation. The attractive catalytic performance mainly resulted from efficient mass transfer and the maintenance of the chemical properties of the cationic Ru complex in the H-CPPs.
  相似文献   

4.
Manganese oxide/single-wall carbon nanotubes (MnO2/SWNT) composite was co-deposited by the potentiostatic method on a graphite slice. Morphological and structural performances for MnO2/SWNT composite were characterized by means of scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The wall surface of SWNT was wrapped by ramsdellite MnO2 nanoparticles to fabricate MnO2/SWNT coaxial nanotubes, which further interconnected other MnO2 particles to form the porous MnO2/SWNT composite. The electrochemical properties were examined by cyclic voltammograms, galvanostatic charge and discharge and electrochemical impedance spectrum. A high specific capacitance of 421 F g?1 was obtained for overall MnO2/SWNT composite electrode at the constant current density of 1 A g?1 in 3 mol L?1 KCl solution.  相似文献   

5.
In this study we have synthesized and characterized FeS2 nanoparticles with larger optical band gap (3.19 eV) and high thermal stability by hydrothermal route with capping reagent PEG 400. This high quality FeS2 nanoparticle with higher band gap energy was applied as semiconducting acceptor in MEHPPV:FeS2 nanoparticle based hybrid solar cells to improve the open circuit voltage. Variations in the property of FeS2 have been done and confirmed by XRD, FE-SEM, TEM, FTIR, TGA, UV–VIS spectroscopy and Raman study. Two types of solar cells have been fabricated with structures: ITO/PEDOT:PSS/MEHPPV/Al and ITO/PEDOT:PSS/MEHPPV:FeS2/Al. The open circuit voltage has been increased from 0.64 to 0.72 V by compositing FeS2 nanoparticle within MEHPPV matrix.  相似文献   

6.
The voltammetry and electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3 2+) ion-exchanged in Nafion and Nafion-silica composite materials have been investigated. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved reactivity and long-term stability. Nation-silica composite materials with varying contents of Nation (53-100 wt% relative to silica) were prepared via the two-step acid/base hydrolysis and condensation of tetramethoxysilane. The Nafion doped sols were spin cast on glassy carbon electrodes, dried, and then ion-exchanged with Ru(bpy)3 2+. The shapes of the cyclic voltammetric curves and the amount of Ru(bpy)3 2+ exchanged into the films strongly depends on the amount of Nafion incorporated into the hybrid sol. Nafion-silica films with a low content of Nafion ion-exchanged less Ru(bpy)3 2+ and exhibited tail-shaped voltammetry at 100 mV/s. The ECL of immobilized Ru(bpy)3 2+ in the presence of either tripropylamine or sodium oxalate in pH 5 acetate buffer was also strongly dependent on the amount of Nafion introduced into the composite with greater ECL observed for the Nafion-silica films relative to pure Nafion.  相似文献   

7.
A novel and sensitive electrogenerated chemiluminescence (ECL) sensor for formaldehyde was developed with the amine-functionalized Ru(bpy)32+-doped silica nanoparticles (Ru-DSNPs) as ECL emitter. Ru(bpy)32+ doped on the silica nanoparticle can maintain its electrochemical activities, which made silica nano-beads a excellent carrier of Ru(bpy)32+ species. The uniform Ru-DSNPs (about 75 nm) were conjugated with Au electrode using mercaptoacetic acid as the intermediate to fabricate an ECL sensor for formaldehyde. The ECL analytical performances of this ECL sensor for formaldehyde based on its enhancement ECL emission of Ru(bpy)32+ were investigated in details. Under the optimum condition, the ECL intensity was linear with the formaldehyde concentration in the range of 1.0 × 10? 8 mol/L to 1.0 × 10? 6 mol/L. The detection limit was 6.0 × 10? 9 mol/L (S/N = 3). This approach offered obvious advantages of being simpler, faster, and more stable compared with other sensors, and possessed great potential for formaldehyde detection which could be applied to determine directly the formaldehyde in real samples without pre-separation.  相似文献   

8.
CO2 conversion into value‐added chemical fuels driven by solar energy is an intriguing approach to address the current and future demand of energy supply. Currently, most reported surface‐sensitized heterogeneous photocatalysts present poor activity and selectivity under visible light irradiation. Here, photosensitized porous metallic and magnetic 1200 Co C composites (PMMCoCC‐1200) are coupled with a [Ru(bpy)3]Cl2 photosensitizer to efficiently reduce CO2 under visible‐light irradiation in a selective and sustainable way. As a result, the CO production reaches a high yield of 1258.30 µL with selectivity of 64.21% in 6 h, superior to most reported heterogeneous photocatalysts. Systematic investigation demonstrates that the central metal cobalt is the active site for activating the adsorbed CO2 molecules and the surficial graphite carbon coating on cobalt metal is crucial for transferring the electrons from the triplet metal‐to‐ligand charge transfer of the photosensitizer Ru(bpy)32+, which gives rise to significant enhancement for CO2 reduction efficiency. The fast electron injection from the excited Ru(bpy)32+ to PMMCoCC‐1200 and the slow backward charge recombination result in a long‐lived, charge‐separated state for CO2 reduction. More impressively, the long‐time stability and easy magnetic recycling ability of this metallic photocatalyst offer more benefits to the photocatalytic field.  相似文献   

9.
The horizontally aligned MoO2/single-walled carbon nanotube (MoO2/SWNT) composite has been prepared by electrochemically induced deposition method which utilizes the good electronic conductivity of SWNTs as supporting material to deposit MoO2. The morphology and crystal structure of the composite were investigated by X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. The capacitive properties of the MoO2/SWNT composites have been investigated by cyclic voltammetry (CV). A specific capacitance (based on MoO2) as high as 597 F g− 1 is obtained at a scan rate of 10 mV s− 1 in 0.1 M Na2SO4 aqueous solution. Additionally, the MoO2/SWNT composites electrode shows excellent long-term cycle stability (only 2.5% decrease of the specific capacitance is observed after 600 CV cycles).  相似文献   

10.
A simple procedure was developed for the preparation of glassy carbon electrodes modified with single wall carbon nanotubes (SWCNTs) and multilayers of SiΜο12Ο404−-[Ru(bpy)(tpy)Cl]+(byp; bipyridine, tpy; terpyridine). Layer-by-layer deposition technique was used for the multilayer formation of SiΜο12Ο404−-[Ru(bpy)(tpy)Cl]+ onto SWCNTs films. Based on the strong electrostatic attraction of oppositely charged species a Ru-complex/poly oxometalate hybrid film strongly and irreversibly adsorbed on the glassy carbon electrode modified with single walled carbon nanotubes. The multilayer assembly exhibited good stability and excellent electrochemical reversibility for both redox systems in the pH range1-7. It was found that up to fifteen monolayers could be deposited onto a carbon nanotube film with well defined redox behavior. The modified electrode shows excellent electrocatalytic activity towards sulfite oxidation. Due to synergistic effect between SWCNTs and oppositely charged species the repeated alternate adsorption of anions and cations by this simple dipping method leads to molecular sandwiches with interesting redox activity and remarkable stability.  相似文献   

11.
Choi HN  Cho SH  Lee WY 《Analytical chemistry》2003,75(16):4250-4256
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) immobilized in sol-gel-derived titania TiO2)-Nafion composite films coated on a glassy carbon electrode have been investigated. The electroactivity of Ru(bpy)3(2+) ion exchanged into the composite films and its ECL behavior were strongly dependent upon the amount of Nafion incorporated into the TiO2-Nafion composite films. The ECL sensor of Ru(bpy)32+ immobilized in a TiO2-Nafion composite with 50% Nafion content showed the maximum ECL intensities for both tripropylamine (TPA) and sodium oxalate in 0.05 M phosphate buffer solution at pH 7. Detection limits were 0.1 microM for TPA and 1.0 microM for oxalate (S/N = 3) with a linear range of 3 orders of magnitude in concentration. The present ECL sensor showed improved ECL sensitivity and long-term stability, as compared to the ECL sensors based on pure Nafion films. The present Ru(bpy)3(2+) ECL sensor based on TiO2-Nafion (50%) composite films was applied as an HPLC detector for the determination of erythromycin in human urine samples. The present Ru(bpy)3(2+) ECL sensor was stable in the mobile phase containing a high content of organic solvent (30%, v/v), in contrast to a pure Nafion-based Ru(bpy)3(2+) ECL sensor. The detection limit for erythromycin was 1.0 microM, with a linear range of 3 orders of magnitude in concentration.  相似文献   

12.
The photoelectrochemical (photovoltaic and photocatalytic) properties of single crystal CdS electrodes modified with polymeric films of Ru(v-bpy)3]2+ (v-bpy is 4-vinyl-4-methyl-2,2-bipyridine) are presented. Such modified electrodes exhibit longer lifetimes than their native counterparts when operated in a photovoltaic cell with the free and immobilized ferro/ferri cyanide redox system. The photocatalytic behavior with I3 /I with and without sulfite solution has also been investigated.  相似文献   

13.
Sulfur cathodes have been under intensive study in various systems, such as Li/S, Na/S, Mg/S, and Al/S batteries. However, to date, Zn/S chemistry has never been reported. The first reliable aqueous Zn/polysulfide system activated by a “liquid film” comprising 4-(3-butyl-1-imidazolio)-1-butanesulfoni ionic liquid (IL) encapsulated within PEDOT:PSS. CF3SO3 anions in the IL operating as Zn2+-transfer channels is reported. Moreover, the PEDOT:PSS network retains the IL, which renders Zn2+-transfer channels and a polysulfide cathode with enhanced structural stability. The Zn/polysulfide system delivers extraordinary capacity of 1148 mAh g−1 and overwhelming energy density of 724.7 Wh kg−1cathode at 0.3 Ag−1. During the discharging phase, S62− is dominantly reduced by Zn to S2− (S6 → S2−). During the charging phase, these short chains are oxidized to form long-chain ZnxLiyS3-6. A further optimized high-concentrated salt electrolyte is used to improve the reversibility of the battery, demonstrating an extended lifetime over 1600 cycles at 1 Ag−1 with a capacity retention of 204 mAh g−1. This facile approach and the superior performance of the developed aqueous Zn/S chemistry provide a new platform for sulfur-based battery and potentially solve the problems of other metal/sulfur batteries.  相似文献   

14.
The effects of metal ions on the electrochemiluminescence (ECL) properties of (bpy)2Ru(AZA-bpy) (bpy = 2,2'-bipyridine; AZA-bpy = 4-(N-aza-18-crown-6-methyl-2,2'-bipyridine) have been investigated. The electrochemistry, photophysics and ECL of Ru(bpy)3(2+) in the presence of Pb2+, Hg2+, Cu2+, and K+ are reported. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in 50:50 (v/v) CH3CN:H2O solution. Increases in ECL efficiency (photons generated per redox event) up to 20-fold that depend on both the concentration and nature of the metal ion have been observed, making this an interesting system for electrochemiluminescence metal ion sensing.  相似文献   

15.
The electrochemistry and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl) were studied in the presence of the nonionic surfactants Triton X-100, Thesit, and Nonidet P40. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine in both aqueous and surfactant solutions. Increases in both ECL efficiency (> or =8-fold) and duration of the ECL signal were observed in surfactant media. A shift to lower energies of the Ru(bpy)3(2+) ECL emission by approximately 8 nm was also observed. The one-electron oxidation of Ru(bpy)3(2+) to Ru(bpy)3(3t) occurs at + 1.03 V vs Ag/AgCl in aqueous buffered (0.2 M potassium phosphate) solution as found by square wave voltammetry. This potential did not shift in surfactant systems, indicating that the redshifts in ECL emission are due to stabilization of ligand pi* orbitals in the metal-to-ligand charge-transfer excited state. These results are consistent with hydrophobic interactions between Ru(bpy)3(2+) and the nonionic surfactants.  相似文献   

16.
Polymer composite formulations for decontamination were developed on the basis of a polyvinyl alcohol solution as a binder with active additives (HNO3, HBF4, 1-hydroxyethane-1,1-diphosphonic acid and its triammonium salt, and a synthetic detergent) and fillers (natural rottenstone; rottenstone modified with nickel and copper ferrocyanides; dolomite modified with nickel ferrocyanide; clinoptilolite modified with iron(III) and calcium chlorides, sodium phosphate, and potassium ferrocyanide; hydrolytic lignin). The developed polymer composite materials (pastes) exhibit high decontaminating ability (DF = 102–103) and low adhesion to the tested surfaces of stainless and carbon steels (including painted surfaces), plastic compound, self-leveling floors, and Teflon surface.  相似文献   

17.
Photo-induced complex formation of tris-2,2′-bipyridine iron(II) complex ([Fe(bpy)3]2+) from the mixture of FeCl3 and 2,2′-bipyridine was achieved in silica gel containing 150-300 μm silica particles, derived from a complex emulsion with HCl aqueous solution and tetraethyl orthosilicate (TEOS). More than 95% of Fe(III) and 2,2′-bipyridine were incorporated in silica particles. Yellow-red color change, due to [Fe(bpy)3]2+, was observed by irradiation with 365 nm UV beam at 0.3 mW cm−2 for 120 s. The complex formation accompanies simultaneous spin transition from the high-spin state of Fe(III) to the low-spin state of Fe(II).  相似文献   

18.
Polycrystalline samples of Gd2?xCo x Ru2O7 with x = 0.0, 0.1 and 0.4 were synthesized by the molten salt method. The samples were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrical resistivity measurements. Rietveld refinements of the XRD patterns and XPS measurements showed that the Co2+ ion replaces Gd3+ sites. As a result, the lattice parameter a and the Ru–O bond length decrease; then, the Ru–O–Ru bond angle increases. Those changes induce a charge compensation which was detected by XPS measurements. The analysis of these results shows that the Ru 3d5/2 core level could be fitted assuming the contribution of two different chemical states of the Ru. The Ru 3d5/2 core level is localized at 280.7 and 281.6 eV, which corresponds to Ru4+ and Ru5+. The valence band XPS spectra show an increase in Co 3d states at the Fermi level as the Co content increases, which contribute to the decrease in the electrical resistivity.  相似文献   

19.
The electrogenerated chemiluminescence (ECL) of Ru(bpy)3 2+ and tripropylamine, tributylamine, triethylamine, trimethylamine, or sodium oxalate encapsulated within sol-gel-derived silica monoliths have been investigated using an immobilized ultramicroelectrode assembly. The major purpose of this study was to investigate the role of the reductant on the magnitude and stability of the ECL in this solid host matrix. For gel-entrapped Ru(bpy)3 2-/tertiary amines, the shape and intensity of the ECL-potential curves were highly dependent on scan rate. At 10 mV/s, the ECL intensity was ca. 6-fold higher relative to that observed at 500 mV/s. When the ECL acquired at low scan rates was normalized by that obtained in solution under similar conditions, a value of 0.03-0.06 was obtained. In direct contrast, the ECL of the Ru(bpy)3 2+-oxalate system showed little dependence on scan rate, and the ECL was ca. 65-75% of that measured in solution. These differences can be attributed to differences in rotational and translational mobility between the reductants (amines vs oxalate) trapped in this porous solid host For both systems, the ECL was found to be stable upon continuous oxidation or upon drying the gels in a high-humidity environment for over 10 days.  相似文献   

20.
The use of a graphite-stainless steel composite as bipolar plates (BP) in polymer electrolyte membrane fuel cells (PEMFCs) has been evaluated. The study covers measurements of mechanical properties, microstructural examination, analysis of surface profile, wettability, porosity and corrosion resistance of the composite. The corrosion properties of the composite were examined in 0.1 mol·dm?3 H2SO4 + 2 ppm F? saturated with H2 or with O2 and in solutions with different pH: in Na2SO4+ 2 ppm F? (pH = 1.00, 3.00, 5.00) at 80 °C. The performed tests indicate that the graphite modified with stainless steel can be a good choice to be used as a bipolar plate in PEM fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号