首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
机械合金化制备的纳米晶W-Cu电触头材料   总被引:2,自引:0,他引:2  
采用真空高温热压熔渗烧结工艺制备出密度为 99 5 %的纳米晶W Cu电触头材料。其组织结构和晶粒大小采用SEM ,TEM和XRD观察。同时就纳米晶W Cu电触头材料的硬度、电导率、耐电压强度和抗电弧烧蚀性与传统粉末冶金工艺制备的进行了对比分析。结果表明 ,纳米晶W Cu电触头材料的硬度、抗电弧烧蚀性及耐电压稳定性远优于传统熔渗法的W Cu合金 ,而电导率两者相差不大。  相似文献   

2.
W-30wt.%Cu powder prepared by mechanical alloying (MA) was annealed at various temperatures to investigate the structural change of MA W-Cu powder. From differential scanning calorimeter analysis and transmission electron microscope observation, it was revealed that the recovery of W in MA W-30wt.%Cu powder occurred at 700°C and the W grain started growing also at this temperature. The W grain had grown significantly after annealing at 900°C, and the Cu phase in the MA powder was found to act as liquid melt near 900°C. The microstructure of the sintered specimen was similar to that of the W-Cu alloy via liquid phase sintering. This microstructure, even at temperatures below Cu melting, was the new feature observed in the MA W-Cu powder. This suggests that such a microstructure is closely related to the inherent high diffusivity of the nanosized W crystallites as well as the liquid-like behavior of the Cu phase.  相似文献   

3.
The microstructure and properties of the 93W-4Ni-2Co-1Fe(mass fraction,%) tungsten heavy alloys prepared by mechanical alloying and electric current activated sintering from mixed elemental powders were investigated.After 15 h milling,the average W grain size in the powders is decreased to 120 nm.For the powders milled for 15 h,the density,hardness and transverse rupture strength of the alloys sintered only by an intensive pulse electric current are the maximum.When the total sintering time keeps constant,t...  相似文献   

4.
Mechanical alloying (MA) is proposed and tested as an alternative method of producing high-temperature brazing alloys. The oxygen content and distribution in the volume of the particles were determined in the powders of the high-temperature brazing alloy, produced by MA and dispersion of the melt. To reduce the oxygen content, the mechanically alloyed powders of the brazing alloy were refined in nitrogen. The data are presented for the experimental brazed joints produced with high-temperature brazing alloys prepared by MA with or without subsequent refining.  相似文献   

5.
1 INTRODUCTIONTungsten basedheavyalloyisauniquematerialduetothecombinationofitshighdensity ,highstrength ,highductility ,highconductivityandgoodmachinability[1,2 ].Itiswidelyusedforradioactiveshielding,inertialandmilitary penetratingapplica tions.FullydenseW N…  相似文献   

6.
The equiatomic multiprincipal CoCrFeCuNi and CoCrFeMnNi high-entropy alloys (HEAs) were consolidated via high pressure sintering (HPS) from the powders prepared by the mechanical alloying method (MA). The structures of the MA'ed CoCrFeCuNi and CoCrFeMnNi powders consisted of a face-centered-cubic (FCC) phase and a minority body-centered cubic (BCC) phase. After being consolidated by HPS at 5 GPa, the structure of both HEAs transformed to a single FCC phase. The grain sizes of the HPS'ed CoCrFeCuNi and CoCrFeMnNi HEAs were about 100 nm. The alloys keep the FCC structure until the pressure reaches 31 GPa. The hardness of the HPS'ed CoCrFeCuNi and CoCrFeMnNi HEAs were 494 Hv and 587 Hv, respectively, much higher than their counterparts prepared by casting. Both alloys show typical paramagnetism, however, possessing different saturated magnetization. The mechanisms responsible for the observed influence of Cu and Mn on mechanical behavior and magnetic property of the HEAs are discussed in detail.  相似文献   

7.
机械合金化和熔炼法制备的Cu—15Ni—8Sn合金的Spinodal分解   总被引:3,自引:0,他引:3  
利用透射电子显微镜(TEM)和X射线多晶衍射(XRD)观察分析了机械合金化(MA)和熔炼两种方法制备的Cu-15Ni-8Sn(质量分数,%)合金在400℃不同时效时间Spinodal分解产生的调幅组织结构和边带卫星峰,及合金固溶体的晶格参数变化。同时用维氏硬度计测量了合金的时效硬度变化,结果表明,与熔炼法相比,MA制备的该合金时效过程中,Spinodal分解初期的调幅组织结构波长较大,调幅分解速度也慢慢,延缓了γ′相的析出,但时效过程中二者硬度达到峰值的时间几乎是一致的。  相似文献   

8.
Spark plasma sintering on mechanically activated W-Cu powders   总被引:3,自引:0,他引:3  
Mechanically activated W-Cu powders were sintered by a spark plasma sintering system (SPS) in order to develop a new process and improve the properties of the alloy. Properties such as density and hardness were measured. The microstructures of the sintered W-Cu alloy samples were observed by SEM (scanning electron microscope). The results show that spark plasma sintering can obviously lower the sintering temperature and increase the density of the alloy. This process can also improve the hardness of the alloy. SPS is an effective method to obtain W-Cu powders with high density and superior physical properties.  相似文献   

9.
机械合金化法制备Al—Cu—Fe纳米非晶合金   总被引:8,自引:1,他引:8  
采用行星式高能球磨机制备了Al80-xCuxFe20(x=20-40)三元非晶纳米合金粉末,分析了不同球磨时间及热处理工艺对粉末结构、颗粒大小等的影响。结果表明:成分为Al40Cu40Fe20的粉末球磨时逐步非晶化,球磨33h后,非晶化程度最大,最小颗粒尺寸达到5.6nm;进一步球磨,非晶晶化,颗粒尺寸增大;成分为Al80-xCuxFe20(x=20,25,30)的粉末球磨90h后,得到非晶,最小颗粒尺寸为3.4nm。球磨制备的Al-Cu-Fe非晶粉末具有铁磁性。用DSC测量了其晶化温度(Tc),Tc≈873℃。  相似文献   

10.
研究了机械合金化诱发AgCu20Ni2过饱和合金粉末的形成及粉末冶金方法制备AgCu20Ni2合金的过程,对获得的AgCu20Ni2合金的组织和物理性能关系进行了分析,探讨了制备工艺和冷压变形对合金综合性能的影响。结果表明:采用高能球磨30 h,可获得纳米晶的过饱和合金粉末;合金粉末制备的AgCu20Ni2合金由富Ag的基体α相和均匀分布的析出β相构成,析出相界面结构能有效阻碍基体中位错的运动,强化效果明显。合金断口的SEM、EDS分析表明,AgCu20Ni2合金的断裂类型为韧性断裂。  相似文献   

11.
The effects of sintering conditions on the microstructural evolution and mechanical properties of mechanically alloyed tungsten heavy alloys were investigated. W, Ni and Fe powders were mechanically alloyed in a tumbler ball mill at a milling speed of 75 rpm, ball-to-powder ratio of 20∶1 and ball filling ratio of 15%. The mechanically alloyed powders were compacted and solid-state sintered at a temperature of 1300°C for 1 hour in a hydrogen atmosphere. The solid-state sintered tungsten heavy alloy was subsequently liquid-phase sintered at 1470°C with varying sintering times from 4 min to 90 min. The solid-state sintered tungsten heavy alloy showed fine tungsten particles of 3 μm in diameter and high relative density above 99%. The volume fraction of the W-Ni-Fe matrix phase was measured, as 11% and tungsten/tungsten contiguity was 0.74 in solid-state sintered tungsten heavy alloys. Mechanically alloyed and two-step sintered tungsten heavy alloys showed tungsten particles of 6–15 μm and a volume fraction of the W-Ni-Fe matrix phase of 16% and tungsten/tungsten contiguity of 0.40. The solid-state sintered tungsten heavy alloy exhibited a yield strength of about 1100 MPa due to its finer tungsten particles, while it showed low elongation and impact energy due to its large tungsten/tungsten contiguity. The yield strength of two-step sintered tungsten heavy alloys increased with the decreasing of tungsten particle size and volume fraction of the W-Ni-Fe matrix. This article is based on a presentation made in “The 4th International Conference on Fracture and Strength of Solid”, held at POSTECH, Pohang, Korea, August 16–18, 2000 under the auspices of Far East and Ocean Fracture Society (FEOFS)et al.  相似文献   

12.
The properties of W-15 wt.%Cu composites were investigated by preparing two distinct composites of micrometer and nanoscale structures. Micrometer composite was produced by mixing elemental W and Cu powders and nanometer one was synthesized through a mechanochemical reaction between WO3 and CuO powders. Subsequent compaction and sintering process was performed to ensure maximum possible densification at 1000-1200 °C temperatures. Finally, the behavior of produced samples including relative density, hardness, compressive strength, electrical conductivity, coefficient of thermal expansion (CTE) and room temperature corrosion resistance were examined. Among the composites, nano-structured sample sintered at 1200 °C exhibited better homogeneity, the highest relative density (94%) and mechanical properties. Furthermore, this composite showed superior electrical conductivity (31.58 IACS) and CTE (9.95384 × 10- 6) in comparison with micrometer type. This appropriate properties may be mainly attributed to liquid phase sintering with particle rearrangement which induced by higher capillary forces of finer structures.  相似文献   

13.
1 INTRODUCTIONTitaniumaluminidesareattractivecandidatema terialsforaerospacestructuralandengineapplica tions ,owingtotheirlowdensi  相似文献   

14.
采用高能球磨机械合金化法制备了Au-20%Sn合金,分析了合金物相、组织和硬度随球磨时间的变化规律,探讨了合金塑性与合金组织及制备工艺的关系。结果表明:采用高能球磨机械合金化法可以制备Au-20%Sn合金;随球磨时间的增加,Au-20%Sn的合金化程度增加,组织中的金属间化合物逐渐增多,最终基本上为δ相和ζ′相;合金的硬度随球磨时间的延长逐渐升高,并在球磨60min后获得最高硬度104.2HV,然后开始下降;球磨后的合金粉末在190℃×2h的烧结过程中发生了不同程度的再结晶和晶粒长大,再结晶程度随球磨时间的延长而增加,导致烧结后合金硬度在球磨时间超过60min后反而下降。  相似文献   

15.
通过气雾化方法制备Al86Ni7Y4.5Co1La1.5(摩尔分数,%)合金粉末。首先,将粉末进行不同时间的球磨,然后在不同的烧结温度及保压时间等条件下对粉末分别进行热压烧结和放电等离子烧结。通过X射线衍射仪(XRD),扫描电镜(sEM)以及透射电镜(TEM)对粉末和块体材料的显微组织和形貌进行表征。结果表明:在特定球磨参数下球磨100h以上可以产生非晶,而且通过放电等离子烧结可以得到非晶/纳米晶块体材料,然而这种材料的相对密度较低。通过热压烧结可制备抗压强度为650MPa的Al86Ni7Y4.5Co1La1.5纳米块体材料。  相似文献   

16.
本文主要讨论了Cu—SiC复合粉体经球磨后的烧结性能变化情况,通过对球磨后Cu—SiC复合粉体进行XRD、DSC分析,来了解球磨过程对Cu—SiC粉体以及烧结体性能的影响。X射线结果表明:随着球磨加工的进行,粉体的晶粒尺寸减小,Cu衍射峰消失。DSC分析的结果表明:在粉体中储存大量的能量,这些能量的储存降低了复合粉体的烧结温度,改善了烧结体的强度。烧结实验结果表明:在800℃的烧结温度下,经20h球磨后,粉体的抗折强度达到了15MPa以上。  相似文献   

17.
Spark plasma sintering technique was used for the consolidation of nanostructured titanium carbide synthesized by mechanical alloying in order to avoid any important grain growth of the compact materials. The TiC phase was obtained after about 2 h of mechanical alloying. Towards the end of the milling process (20 h), the nanocrystalline powders reached a critical size value of less than 5 nm. Some physical and mechanical properties of the consolidated carbide were reported as a function of the starting grain size powders obtained after different mechanical alloying durations. The crystalline grain size of the bulk samples was found to be increased to a maximum of 120 nm and 91 nm for carbides mechanically alloyed for 2 h and 20 h respectively. The Vickers hardness showed to be improved to about 2700 Hv for a maximum density of 95.1% of the bulk material.  相似文献   

18.
Mechanical alloying was employed to obtain high-activity Ni-AI powder. The effects of mechanical alloying on the microstructure and characteristics of milled powder with a normal composition of Ni-22.89 at.% AI-0.5 at.% B were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that a solution Ni (AI) was obtained after milling. During mechanical alloying, the milled powder obtains extra surface energy and crystalline energy because the crystallite size becomes free and the lattice strain increases with the milling time prolonging. Furthermore, about 0.5 mol% oxide in the particles were formed after milling, and this kind of dis- persed oxide is effective to improve the properties of the sintered alloy by dispersion strengthening. It is confirmed that Ni3AI alloy with outstanding properties has been prepared with mechanical alloyed powders.  相似文献   

19.
FeCoCrNiMn high-entropy alloys were produced by mechanical alloying (MA) and vacuum hot pressing sintering (VHPS). Results showed that the nano-crystalline alloy powders were obtained by MA and the corresponding phase structures were composed of FCC matrices and low amounts of BCC and amorphous phases. After VHPS, the BCC phases almost disappeared, simultaneously with the precipitation of σ phases and M23C6 carbides. An increase of sintering temperature resulted in grain growth of the precipitated phases. As the sintering temperature was increased from 700 to 1000 °C, the strain-to-failure of the alloys rose from 4.4% to 38.2%, whereas the yield strength decreased from 1682 to 774 MPa. The bulk FeCoCrNiMn HEAs, consolidated by VHPS at 800 °C and 900 °C for 1 h, showed relatively good combination of strength and ductility.  相似文献   

20.
机械合金化对Mg_2Ni相形成的影响   总被引:2,自引:0,他引:2  
用两步法 (即由机械合金化和压制烧结两个步骤组成 )制备了Mg2 Ni合金。实验证明 :混合粉经机械合金化后 ,晶粒细化 ,增加了固态扩散的能力 ,有利于固相反应进行 ,使Mg2 Ni产率明显提高。不同温度烧结处理的结果表明 :烧结温度是影响Mg2 Ni相形成的重要因素 ,烧结温度达到 843K ,Mg Ni粉基本能完全转变为Mg2 Ni相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号