首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have designed a synthetic cornea that has a transparent hydrogel optic and a porous skirt. The device has been implanted in rabbit corneas. We have shown that keratocytes migrate into the device and deposit a complex extracellular matrix. The immediate response is detected in the surrounding stroma, and the secondary response is seen after cells have deposited a matrix in the disc. After implantation, a decrease in keratan sulfate accompanied by an increase in dermatan sulfate was detected in the surrounding tissue compared to the unwounded corneal stroma. The glycosaminoglycans in the disc resemble that of an injured stroma. The appearance of heparan sulfate and growth factors, bFGF and TGFbeta, was not detected until 6 weeks after implantation. The growth factors were detected at the interface between the device and the tissue and become more diffuse over time. Methods of controlled release in vivo were used to enhance the rate of fibroplasia and wound repair. While these were successful in the cornea itself, when combined with the synthetic cornea the response was magnified and the initial attempts yielded neovascularization and edema. Currently, efforts are being directed at controlling the release within the porous haptic so that fibroplasia is enhanced while minimizing an inflammatory response.  相似文献   

2.
Blood vessels originate as simple endothelial cell tubes. It has been proposed that platelet-derived growth factor B polypeptide (Pdgfb) secreted by these endothelial cells drives the formation of the surrounding muscular wall by recruiting nearby mesenchymal cells. However, targetted inactivation of the Pdgfb gene or the Pdgf receptor beta (Pdgfrb) gene, by homologous recombination, does not prevent the development of apparently normal large arteries and connective tissue. We have used an in vivo competition assay in which we prepared chimaeric blastocysts, composed of a mixture of wild-type (Pdgfrb[+/+]) and Pdgfrb(+/-) or wild-type and Pdgfrb(-/-) cells, and quantified the relative success of cells of the two component genotypes in competing for representation in different cell lineages as the chimaeric embryos developed. This study revealed that the participation of Pdgfrb(-/-) cells in all muscle lineages (smooth, cardiac, skeletal and pericyte) was reduced by eightfold compared with Pdgfrb(+/+) cells, and that participation of Pdgfrb(+/-) cells was reduced by twofold (eightfold for pericytes). Pdgfrb inactivation did not affect cell contribution to non-muscle mesodermal lineages, including fibroblasts and endothelial cells. Chimaera competition is therefore a sensitive, quantitative method for determining developmental roles of specific genes, even when those roles are not apparent from analysis of purebred mutants; most likely because they are masked by homeostatic mechanisms.  相似文献   

3.
The biodistribution of biodegradable poly(organo phosphazene) nanoparticles surface modified by adsorption of a novel poly(organo phosphazene)-poly(ethylene oxide) copolymer with a 5000 M(W) PEO chain (PF-PEO[5000]), following intravenous administration in rats and rabbits, is described. The data are compared to the biodistribution of poly(organo phosphazene) and poly(lactide-co-glycolide) nanoparticles coated with a tetrafunctional copolymer of poly(ethylene oxide)-poly(propylene oxide) ethylenediamine, commercially available as Poloxamine 908. This copolymer has a PEO chain of the same size as the poly(organo phosphazene)-PEO derivative used. The results in the rat model reveal that poly(organo phosphazene) nanoparticles with a Poloxamine 908 coating were mainly captured by the liver, although a retardation in clearance from the systemic circulation was seen. In contrast, the poly(organo phosphazene) nanoparticles coated with PF-PEO(5000) showed a prolonged blood circulating profile, with only a small amount of the nanoparticles sequestered by the liver. This indicates the importance of the nature of both the anchoring group and the particle surface on the biological performances of the system. Study of the biodistribution of the PF-PEO(5000)-coated poly(organo phosphazene) nanoparticles in the rabbit model also indicated a prolonged systemic circulation lifetime and reduced liver uptake, whereby a significant amount of the administered nanoparticles was targeted to the bone marrow.  相似文献   

4.
Biodegradable block copolymers made of poly(ethylene glycol) monomethylether (Me.PEG) and poly(D,L-lactic acid) (PLA) were investigated for their erosion properties. Wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) investigations prior to erosion revealed that despite the low content of crystallizable Me.PEG of 10%, Me.PEG5-PLA45 is a partially crystalline polymer. The erosion of the polymer was investigated using cylindrical polymer matrix discs with a diameter of 8 mm and a height of 1.5 mm. WAXD and DSC spectra obtained from eroded polymer matrix discs suggest that both polymer blocks separate completely during erosion. The crystallinity of Me.PEG5-PLA45 was found to increase during erosion, which is probably due to the improved mobility of Me.PEG inside the polymer with a progressive degree of degradation. The erosion kinetics were found to be similar to that of PLA or poly(lactic-co-glycolic acid). During erosion the polymer matrix weight of dried samples remains constant for 11 weeks after which erosion sets in rapidly. From this observation one can conclude that the impact of the relatively small Me.PEG chains on Me.PEG5-PLA45 erosion is not pronounced. This is beneficial for all those applications that require the stability of the polymer matrix and in which the Me.PEG chain is intended to bring about other effects such as the modification of the surface properties of PLA polymers.  相似文献   

5.
The kinetics of isothermal crystallization of poly(ethylene oxide) confined in pores of active carbon was studied by nuclear magnetic resonance relaxation. At equal temperatures the induction period of crystallization in pores differs from that in the bulk polymer. A model was developed that allows estimation of the effect of porous media on the statistical sum of the macromolecule considering the change of the polymer chain conformation in the melt. This model describes the following observed effects: invariability of the induction period temperature dependence in pores, the weak temperature dependence of the ratio of induction period for e bulk, and pore material. The change in the induction period in cylindrical pores was predicted with satisfactory precision.  相似文献   

6.
In this paper, microencapsulation techniques for the preparation of drug-containing monolithic microcapsules for prolonged release using biodegradable poly(alpha-hydroxy) acids, such as polylactic acid, poly(lactide-co-glycolide) and copoly(lactic/glycolic) acid are reviewed. Phase separation, solvent evaporation, and spray drying procedures are discussed. In order to achieve controlled-release formulations of highly water-soluble drugs that are entrapped efficiently, various manufacturing techniques and procedures have been developed. Degradation of poly(alpha-hydroxy) acids is altered by the copolymer ratio and molecular weight of the polymer used to make microcapsules and the amounts of released microencapsulated drugs correlate almost linearly with polymer degradation, indicating that controlled-release formulations, which release drugs over different times, can be prepared using suitable poly(alpha-hydroxy) acids with different degradation rates.  相似文献   

7.
The high speed separation of DNA fragments by using a triblock copolymer, 25% w/v F127 (PEO99PPO69PEO99 with PEO and PPO denoting polyethylene oxide and polypropylene oxide, respectively) which is easy to handle and does not need coating of the quartz capillary, has been investigated. Two ways to decrease the run time are presented: one is to shorten the effective capillary length and the other to increase the electric field strength. In a short capillary, the sieving ability of the separation medium versus the initial band width, and the band width spreading as a function of distance traveled dominate the resolution; at high electric field strength, Joule heating could deteriorate the separation. By taking both effects into account, the phi X174/HaeIII digest could be separated within 100 s by using an 8 mm effective length, 50 microns diameter capillary operating at 300 V/cm.  相似文献   

8.
9.
The transport of poly(ethylene glycol) chains than can promote mucoadhesion across the interface between lightly cross-linked poly(acrylic acid) and mucin may be analyzed as a function of molecular characteristics using theories of chain penetration in a dilute network. The fracture energy for the ensuing adhesive bond is proportional to the number of polymer chains crossing the interface, which, in turn, is related to the polymer volume fraction, the chain diffusion coefficient, and the degree of polymerization. Relevant calculations were performed for a number of cross-linked poly(acrylic acid) gels and three different types of poly(ethylene glycol) chains.  相似文献   

10.
The electrophoretic mobilities of liposomes incorporating a polyethylene glycol (PEG) headgroup coupled to cholesterol for PEG of average chain index 3.0, 13.2, and 22.3 have been determined as a function of PEG-cholesterol mole fraction between 5% and 40% and ionic strength between 2 and 200 mM. The liposome compositions were 40 mole % cholesterol plus PEG-cholesterol, 10 mole % 1,2-dipalmitoyl-sn-glyerco-3-phosphoglycerol, and 50 mole % egg phosphatidylcholine. The mobilities were fit to a model in which the PEG forms a surface layer of polymer subject to viscous drag arising from electroosmotic flow within this layer. The model provides estimates of the average layer thickness that are comparable to those determined from contemporary models of surface-attached polymer.  相似文献   

11.
12.
13.
Complex formation of poly(ethylene glycol)-poly(L-lysine) (PEG-PLL) AB type block copolymer with salmon testes DNA or Col E1 plasmid DNA in aqueous milieu was studied. The PLL segment of PEG-PLL interacts with nucleic acid through an electrostatic force to form a water-soluble complex associate with a diameter of ca. 50 nm. PEG segments surrounding the core of the polyion complex prevented the complex from precipitation even under stoichiometric conditions, at which the unit ratio of L-lysine in PEG-PLL and phosphate in the DNA is equal. The profile of the thermal melting curve revealed a higher stabilization of DNA structure in PEG-PLL/DNA complexes compared to that in the complex made from DNA and PLL homopolymer with the same molecular weight as the PLL segment in PEG-PLL. This stabilizing effect on the DNA structure may be due to the compartmentalization of DNA into the microenvironment of PEG with low permittivity. The reversible nature of the PEG-PLL/DNA complex was further verified through the addition of polyanion [poly-(L-aspartic acid)]: Poly(L-aspartic acid) replaced DNA in the complex with PEG-PLL, resulting in the release of free DNA in the medium. Furthermore, the PEG-PLL/DNA complex showed high resistance against DNase I attack, suggesting DNA protection through the segregation into the core of the associate having PEG palisade.  相似文献   

14.
The influence of three classes of fluorescence labels including dipyrrometheneboron difluoride (BODIPY), energy transfer (ET) and conventional fluorescein and rhodamine (ABI), on DNA sequencing has been examined with laser-induced fluorescence detection and poly(ethylene oxide)-filled capillary electrophoresis. DNA sequencing fragments were generated by dye-labeled primer cycle-sequencing reactions in a hot-air thermal cycler. A parameter, relative-induced shift, was introduced to quantify the uniformity of electrophoretic mobilities of these fragments. BODIPY was found to have the smallest, but nonzero, effect for dye-induced nonuniformity. Although ET dyes provided the highest sensitivity due to their unique spectroscopic properties, they were found to lack photostability compared to BODIPY and ABI dyes. Characterization also brings out some important tips for selecting the suitable dye set for the two-channel ratio-based DNA base-calling method.  相似文献   

15.
The effect of poly(ethylene glycol) cholesteryl ethers (PEG(n)-Chols) with two different numbers of units (n = 50 and 200) in the hydrophilic PEG moiety on cellular endocytic activity was studied on HT-1080 cells. The amphipathic molecules were soluble in aqueous solution. When fluorescein derivatives of PEG-Chols (one fluorescein at the distal end of PEG) were incubated with the cells in culture, the cellular fluorescence was localized at the plasma membrane level and in intracellular vesicles. Fluorescence quantification indicated that for the same external concentration, twice more FPEG(50)-Chol than FPEG(200)-Chol was associated with the cells under the same conditions. Regardless of the length of PEG moiety, PEG-Chols' interaction with cells reduced the endocytic internalization of a fluid phase marker, horseradish peroxidase (HRP) depending on the cell-associated amount. In contrast, internalization of 125I-labeled epidermal growth factor (EGF) through receptor-mediated endocytosis did not change upon incubation with PEG(50)-Chol. The effect of PEG(200)-Chol was also small, since EGF internalization showed a reduction of 10-20%, while at the same concentration as much as 80% of HRP uptake was inhibited. PEG(50)-Chol did not influence the internalization of a larger ligand, 125I-transferrin (Tfn). However, in the presence of PEG(200)-Chol, the uptake of 125I-Tfn decreased remarkably, and yet, PEG(200)-Chol has no influence on the binding and internalization of a monoclonal antibody directed toward the ectodomain of the Tfn-receptor. These results suggested that incorporation of PEG-Chols in the outer monolayer of the plasma membrane specifically inhibited clathrin-independent, but not clathrin-dependent endocytosis.  相似文献   

16.
Novel lactide-based poly(ethylene glycol) (PEG) polymer networks (GL9-PEGs) were prepared by UV copolymerization of a glycerol-lactide triacrylate (GL9-Ac) with PEG monoacrylate (PEG-Ac) to use as scaffolds in tissue engineering, and the surface properties and biocompatibility of these networks were investigated as a function of PEG molecular weight and content. Analysis by ATR-FTIR and ESCA revealed that PEG was incorporated well within the GL9-PEG polymer networks and was enriched at the surfaces. From the results of SEM, AFM, and contact angle analyses, GL9-PEG networks showed relatively rough and irregular surfaces compared to GL9 network, but the mobile PEG chains coupled at their termini were readily exposed toward the aqueous environment when contacting water such that the surfaces became smoother and more hydrophilic. This reorientation and increase in hydrophilicity were more extensive with increasing PEG molecular weight and content. As compared to GL9 network lacking PEG, protein adsorption as well as platelet and S. epidermidis adhesion to GL9-PEG networks were significantly reduced as the molecular weight and content of PEG was increased, indicating that GL9-PEG networks are more biocompatible than the GL9 network due to PEG's passivity. Based on the physical and biological characterization reported, the GL9-PEG materials would appear to be interesting candidates as matrices for tissue engineering.  相似文献   

17.
Liquid-liquid equilibrium (LLE) compositions and interfacial tensions of the aqueous two-phase system containing poly(ethylene glycol) (PEG 4000, average Mr=3500; PEG 6000, average Mr=7500; and PEG 20000, average Mr =20000) and dipotassium hydrogenphosphate were experimentally determined by using a shaking flask method and a drop volume method at 288.15, 298.15 and 308.15 K, respectively.  相似文献   

18.
Thermosensitive polymer networks were synthesized from poly(ethylene glycol), hexamethylene diisocyanate and 1,2,6-hexanetriol in stoichiometric proportions. By varying the amount of 1,2,6-hexanetriol and the molar mass of the poly(ethylene glycol), a wide range of networks with different crosslinking densities was prepared. The networks obtained were characterized by the temperature dependence of their degree of equilibrium swelling in water and by their Young's moduli. For each network, the molecular weight between crosslinks was estimated. The structure of the hydrogels was analysed with respect to scaling laws, and it was found that the results obtained with PEG 1500 and PEG 6000 hydrogels are in agreement with theoretical predictions, whereas those obtained with PEG 400 hydrogels are in disagreement. The release properties of PEG hydrogels were studied by the determination of the diffusion coefficient for acebutolol chlorhydrate and by an analysis of the effect of temperature on these coefficients. Finally, these release properties were correlated with the swelling and structural properties of the hydrogels.  相似文献   

19.
Hydrogel membranes formed by interfacially photopolymerizing poly(ethylene glycol) (PEG) diacrylate precursor solution were prepared from PEG diacrylate of molecular weights (MW) ranging from 2000 (2K) to 20000 (20K) with concentrations ranging from 10% to 30% w/w. The effects of PEG diacrylate MW and concentration in the membrane precursor solution upon the diffusivities of vitamin B12, myoglobin, ovalbumin, albumin, and IgG were determined. Regardless of the concentration of the PEG diacrylate in the precursor solution, hydrogels prepared with PEG 2K, 4K, and 8K diacrylate were impermeable to proteins with a size equal to or larger than myoglobin (22 kDa), while hydrogels prepared with PEG 20K diacrylate were impermeable to proteins with a size equal to or larger than ovalbumin (45 kDa). Similarities between hydrogels formed from PEG 2K, 4K, and 8K diacrylates were also seen in calculations of the molecular weight between crosslinks and the mesh size, with values in the range of 150-750 g/mol and 15-35 A, respectively, depending on PEG diacrylate concentration. In contrast, hydrogels formed from PEG 20K diacrylate had molecular weight between crosslinks ranging from 1150 to 2000 g/mol and mesh sizes ranging from 45-70 A, with larger values being observed in membranes polymerized from more dilute PEG diacrylate precursor.  相似文献   

20.
Sodium chloride transport across isolated cecum mucosa was investigated in normal rats and rats with adaptive cecum growth induced by dietary polyethylene glycol (PEG). The normal cecum absorbed Cl in excess of Na with a small short-circuit current (ISC). Dietary adaptation led to large equivalent increments of Na and Cl net absorption without adequate ISC change. Inhibitor studies (mucosal amiloride 10(-3) and 10(-4) M; mucosal 4, 4-diisothiocyanatostilbene-2,2-disulfonic acid 5 x 10(-5) M; serosal furosemide 10(-3) M; serosal ouabain 10(-3) M) suggested that normal cecal NaCl absorption involves electroneutral Na/H and Cl/HCO3 exchange at the apical and Na-K-ATPase-mediated exit across the basolateral cell membrane. Dietary adaptation stimulates the loosely coupled antiports and possibly activates a small serosally located NaCl cotransport. Comparative histology showed flattening of all tissue layers and widening of crypts in PEG animals. Crypt widening may facilitate ion access to underutilized transport sites and, at least in part, explain the increased absorption of the enlarged cecum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号