首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Enhanced postruminal supply of Met during the periparturient period increases dry matter intake and milk yield. In nonruminants, adipose tissue is responsive to AA supply, and can use AA as fuels or for protein synthesis regulated in part via insulin and mechanistic target of rapamycin (mTOR) signaling. Whether enhancing supply of Met has an effect on insulin and mTOR pathways in adipose tissue in peripartal cows is unknown. Multiparous Holstein cows were assigned from ?28 to 60 d relative to parturition to a basal diet (control; 1.47 Mcal/kg of dry matter and 15.3% crude protein prepartum; 1.67 Mcal/kg and 17.7% crude protein postpartum) or the control plus ethyl-cellulose rumen-protected Met (RPM). The RPM was fed individually at a rate of 0.09% of dry matter intake prepartum and 0.10% postpartum. Subcutaneous adipose tissue harvested at ?10, 10, and 30 d relative to parturition (days in milk) was used for quantitative PCR and Western blotting. A glucose tolerance test was performed at ?12 and 12 d in milk to evaluate insulin sensitivity. Area under the curve for glucose in the pre- and postpartum tended to be smaller in cows fed Met. Enhanced Met supply led to greater overall mRNA abundance of Gln (SLC38A1), Glu (SLC1A1), l-type AA (Met, Leu, Val, Phe; SLC3A2), small zwitterionic α-AA (SLC36A1), and neutral AA (SLC1A5) transporters. Abundance of AKT1, RPS6KB1, and EIF4EBP1 was also upregulated in response to Met. A diet × day interaction was observed for protein abundance of insulin receptor due to Met cows having lower values at 30 d postpartum compared with controls. The diet × day interaction was significant for hormone-sensitive lipase due to Met cows having greater abundance at 10 d postpartum compared with controls. Enhanced Met supply upregulated protein abundance of insulin-responsive proteins phosphorylated (p)-AKT, peroxisome proliferator-activated receptor gamma, and fatty acid synthase. Overall abundance of solute carrier family 2 member 4 tended to be greater in cows fed Met. A diet × day interaction was observed for mTOR protein abundance due to greater values for RPM cows at 30 d postpartum compared with controls. Enhanced RPM supply upregulated overall protein abundance of solute carrier family 1 member 3, p-mTOR, and ribosomal protein S6. Overall, data indicate that mTOR and insulin signaling pathways in adipose tissue adapt to the change in physiologic state during the periparturient period. Further studies should be done to clarify whether the activation of p-AKT or increased availability of AA leads to the activation of mTOR.  相似文献   

3.
4.
5.
An important mechanism of nutritional “programming” induced by supplementation with methyl donors during pregnancy is the alteration of mRNA abundance in the offspring. We investigated the effects of rumen-protected Met (RPM) on abundance of 17 genes in the 1-carbon, Met, and transsulfuration pathways in calf liver from cows fed the same basal diet without (control, CON) or with RPM at 0.08% of diet dry matter/d (MET) from ?21 through +30 d around calving. Biopsies (n = 8 calves per diet) were harvested on d 4, 14, 28, and 50 of age. Cows fed RPM had greater plasma concentration of Met (17.8 vs. 28.2 μM) at ?10 d from calving. However, no difference was present in colostrum yield and free AA concentrations. Greater abundance on d 4 and 14 of betaine-homocysteine S-methyltransferase 2 (BHMT2), adenosylhomocysteinase (AHCY; also known as SAHH), and cystathionine-β-synthase (CBS) in MET calves indicated alterations in Met, choline, and homocysteine metabolism. Those data agree with the greater abundance of methionine adenosyltransferase 1A (MAT1A) in MET calves. Along with CBS, the greater abundance of glutamate-cysteine ligase (GCLC) and glutathione reductase (GSR) on d 4 in MET calves indicated a short-term postnatal alteration in the use of homocysteine for taurine and glutathione synthesis (both are potent intracellular antioxidants). The striking 7-fold upregulation at d 50 versus 4 of cysteine sulfinic acid decarboxylase (CSAD), catalyzing the last step of taurine synthesis, in MET and CON calves underscores an important role of taurine during postnatal calf growth. The unique role of taurine in the young calf is further supported by the upregulation of CBS, GCLC, and GSR at d 50 versus 14 and 28 in MET and CON. Although betaine-homocysteine S-methyltransferase (BHMT) activity did not differ in MET and CON, it increased ~50% at d 14 and 28 versus 4. A significant positive correlation (r = 0.79) was present between BHMT abundance and BHMT activity regardless of treatment. The gradual upregulation over time of BHMT2 and SAHH coupled with the gradual upregulation of MAT1A and the DNA (cytosine-5-)-methyltransferases (DNMT1, DNMT3A, DNMT3B) in MET and CON calves was indicative of adaptations potentially driven by differences in intake of milk replacer and starter feed as calves grew. In that context, the ~2.5-fold increase in abundance of DNMT3B at d 50 versus 4 in MET and CON indicate that DNA methylation might be an important component of the physiologic adaptations of calf liver. The data indicate that calves from MET-supplemented cows underwent alterations in Met, choline, and homocysteine metabolism partly to synthesize taurine and glutathione, which would be advantageous for controlling metabolic-related stress. Whether the effects in MET calves were directly related to increased Met supply in utero remains to be determined.  相似文献   

6.
Holstein cows (n = 30) were balanced by days in milk, milk production, and parity (91 ± 5.9 d in milk, 36.2 ± 2.5 kg/d, and 3.1 ± 1.4, respectively) and fed OmniGen-AF (OG; Phibro Animal Health, Teaneck, NJ), an immune stimulant, at 0 g/cow per d for control (CON) or 56 g/cow per d for OG for 52 d on a commercial dairy. At 52 d of the study cows were randomly selected (n = 12) from both groups (6 OG and 6 CON) and housed in environmentally controlled rooms at the Agricultural Research Complex for 21 d at the University of Arizona. Cows were subjected to 7 d of thermoneutral (TN) conditions, 10 d of heat stress (HS), and 4 d of recovery (REC) under TN conditions. Feed intake, milk production, and milk composition were measured daily. Rectal temperatures (RT) and respiration rates (RR) were recorded 3 times per day (600, 1400, and 1800 h). Blood samples were taken on d 7 (TN), 8 (HS), 10 (HS), 17 (HS), and 18 (TN) during the Agricultural Research Complex segment. Cows in HS had higher RR and RT and water intake and lower dry matter intake and milk yield than these measures in TN. There was a treatment × environment interaction with cows fed OG having lower RR and RT and higher dry matter intake during peak thermal loads than CON. However, milk yield did not differ between groups. Cows fed OG had lower milk fat percent than CON (3.7 vs 4.3%) during HS. The SCC content of milk did not differ between treatment groups but rose in both groups during the REC phase following HS. Plasma insulin and plasma glucose levels were not different between groups. However, plasma insulin in both groups was lower during acute HS, then rose across the HS period, and was highest during the REC phase. Plasma cortisol levels were highest in all cows on the first day of HS (d 8) but were lower in cows fed OG compared with CON. However, plasma ACTH concentrations were elevated in OG-fed animals at all times samples were collected. Plasma ACTH was also elevated in cows fed both OG and CON during HS. Feeding OG reduced plasma cortisol during acute but not chronic HS and increased basal plasma ACTH, suggesting that OG treatment may alter the hypothalamic pituitary adrenal axis.  相似文献   

7.
Objectives were to evaluate the effect of feeding rumen-protected methionine (RPM) in pre- and postpartum total mix ration (TMR) on lactation performance and plasma AA concentrations in dairy cows. A total of 470 multiparous Holstein cows [235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled approximately 4 wk before parturition, housed in close-up dry cow and replicated lactation pens. Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): UW control (CON) diet = 2.30 and 2.09% of Met as percentage of metabolizable protein (MP) and RPM diet = 2.83 and 2.58% of Met as MP; CU CON = 2.22 and 2.19% of Met as percentage of MP, and CU RPM = 2.85 and 2.65% of Met as percentage of MP. Treatments were evaluated until 112 ± 3 d in milk (DIM). Milk yield was recorded daily. Milk samples were collected at wk 1 and 2 of lactation, and then every other week, and analyzed for milk composition. For lactation pens, dry matter intake (DMI) was recorded daily. Body weight and body condition score were determined from 4 ± 3 DIM and parturition until 39 ± 3 and 49 DIM, respectively. Plasma AA concentrations were evaluated within 3 h after feeding during the periparturient period [d ?7 (±4), 0, 7 (±1), 14 (±1), and 21 (±1); n = 225]. In addition, plasma AA concentrations were evaluated (every 3 h for 24 h) after feeding in cows at 76 ± 8 DIM (n = 16) and within 3 h after feeding in cows at 80 ± 3 DIM (n = 72). The RPM treatment had no effect on DMI (27.9 vs. 28.0 kg/d) or milk yield (48.7 vs. 49.2 kg/d) for RPM and CON, respectively. Cows fed the RPM treatment had increased milk protein concentration (3.07 vs. 2.95%) and yield (1.48 vs. 1.43 kg/d), and milk fat concentration (3.87 vs. 3.77%), although milk fat yield did not differ. Plasma Met concentrations tended to be greater for cows fed RPM at 7 d before parturition (25.9 vs. 22.9 µM), did not differ at parturition (22.0 vs. 20.4 µM), and were increased on d 7 (31.0 vs. 21.2 µM) and remained greater with consistent concentrations until d 21 postpartum (d 14: 30.5 vs. 19.0 µM; d 21: 31.0 vs. 17.8 µM). However, feeding RPM decreased Leu, Val, Asn, and Ser (d 7, 14, and 21) and Tyr (d 14). At a later stage in lactation, plasma Met was increased for RPM cows (34.4 vs. 16.7 µM) consistently throughout the day, with no changes in other AA. Substantial variation was detected for plasma Met concentration (range: RPM = 8.9–63.3 µM; CON = 7.8–28.8 µM) among cows [coefficient of variation (CV) > 28%] and within cow during the day (CV: 10.5–27.1%). In conclusion, feeding RPM increased plasma Met concentration and improved lactation performance via increased milk protein production.  相似文献   

8.
The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the periparturient period (d ?28 ± 3 to 44 ± 3 relative to calving) on mRNA abundance of genes in the rumen epithelium, inflammation indicators, oxidative status, and adaptive immunity of dairy cows fed diets with different starch content after calving. From d 28 ± 3 (± standard deviation) before the expected calving date to calving, Holstein cows (n = 38) received a common basal controlled-energy close-up diet (1.43 Mcal/kg, net energy for lactation; 13.8% starch) with (SCFP; n = 19) or without (CON; n = 19) SCFP, and cows within each treatment (CON or SCFP) were fed either a low- (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet from d 1 to 23 ± 3 after calving (fresh period). There were 4 treatment groups: LS + CON (n = 9), LS + SCFP (n = 10), HS + CON (n = 10), and HS + SCFP (n = 9). From d 24 ± 3 to 44 ± 3 after calving, all cows were fed the HS diets (post-fresh period). Animal assignment to treatments was balanced for parity, body condition score, and expected calving date. An interaction was observed between dietary starch content and SCFP on indices of oxidative stress; plasma concentrations of total antioxidant capacity tended to be reduced on d 21 after calving for SCFP compared with CON cows when a LS fresh diet was fed, but did not differ for cows fed HS fresh diets. Regardless of starch content, SCFP supplementation increased plasma concentrations of malondialdehyde at d 21 after calving compared with CON. Supplementing with SCFP reduced serum concentrations of haptoglobin on d 7 after calving, indicating reduced inflammation, and feeding LS fresh diets reduced mRNA abundance of IL receptor associated kinase-1 in rumen tissue at d 21 after calving, suggesting reduced immune activation in rumen tissue. Other than the anti-inflammatory effects indicated by lower serum haptoglobin concentration, no other effects of treatment on adaptive immunity were detectable. These results indicate that supplementing SCFP through the transition period and feeding low-starch diets during the fresh period may reduce inflammation.  相似文献   

9.
《Journal of dairy science》2019,102(11):9943-9955
The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the transition period (d −28 ± 3 to 23 ± 3 relative to calving) on rumen fermentation and mRNA abundance of genes in the rumen epithelium of fresh cows (d 1 to 23 ± 3 after calving) fed diets differing in starch content. Eighteen ruminally cannulated multiparous Holstein cows were fed diets with SCFP (n = 9) or without (CON; n = 9) throughout the experiment. All cows were fed a common basal controlled-energy close-up diet (1.43 Mcal/kg, net energy for lactation; 13.8% starch) before calving. Cows within each treatment (CON or SCFP) were fed either a low-starch (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet during the fresh period. Cows were assigned to treatment after balancing for parity, body condition score, and expected calving date. Rumen pH was measured continuously for 72 h starting on d −10, −3, 1, 7, and 21 relative to calving date. Rumen papillae were collected on d −10 and 21 relative to calving. Supplementation of SCFP had no effect on rumen pH during d −10 to −8, but mean rumen pH tended to be higher (6.64 vs. 6.49) for SCFP cows than for CON cows during d −3 to −1. Feeding SCFP decreased the range of rumen pH variation compared with CON within the HS group during both d 7 to 9 (1.08 vs. 1.38) and d 21 to 23 (1.03 vs. 1.30) after calving. In addition, nadir rumen pH tended to be higher (5.64 vs. 5.44) and duration of pH below 5.8 tended to be shorter (116 vs. 323 min/d) for the SCFP group than for the CON group during d 21 to 23 after calving. Supplementation of SCFP increased the mRNA abundance of insulin-like growth factor-6 (1.10 vs. 0.69) before calving and decreased the mRNA abundance of putative anion transporter isoform 1 (1.12 vs. 2.27) after calving. Nadir rumen pH tended to be higher during d 1 to 3 (5.63 vs. 5.41) for LS cows than for HS cows, but rumen pH was not affected by dietary starch content during other time periods. Dietary starch content had no effect on mRNA abundance of genes in the rumen epithelium after calving. These results suggest that supplementation of SCFP may reduce the range of variation in rumen pH in fresh cows fed HS diets and the duration of subacute ruminal acidosis by the end of the fresh period regardless of dietary starch content and that decreasing dietary starch content during the fresh period may reduce the decrease in rumen pH immediately after parturition.  相似文献   

10.
This study investigated the effects of bacterial direct-fed microbials (DFM) on ruminal fermentation and microbial characteristics, methane (CH4) emission, diet digestibility, and milk fatty acid (FA) composition in dairy cows fed diets formulated to induce different ruminal volatile fatty acid (VFA) profiles. Eight ruminally cannulated dairy cows were divided into 2 groups based on parity, days in milk, milk production, and body weight. Cows in each group were fed either a high-starch (38%, HS) or a low-starch (2%, LS) diet in a 55:45 forage-to-concentrate ratio on a dry matter (DM) basis. For each diet, cows were randomly assigned to 1 of 4 treatments in a Latin square design of (1) control (CON); (2) Propionibacterium P63 (P63); (3) P63 plus Lactobacillus plantarum 115 (P63+Lp); (4) P63 plus Lactobacillus rhamnosus 32 (P63+Lr). Strains of DFM were administered at 1010 cfu/d. Methane emission (using the sulfur hexafluoride tracer technique), total-tract digestibility, dry matter intake, and milk production and composition were quantified in wk 3. Ruminal fermentation and microbial characteristics were measured in wk 4. Data were analyzed using the mixed procedure of SAS (SAS Institute Inc., Cary, NC). The 2 diets induced different ruminal VFA profiles, with a greater proportion of propionate at the expense of acetate and butyrate for the HS diet. Greater concentrations of total bacteria and selected bacterial species of methanogenic Archaea were reported for the HS diet, whereas the protozoa concentration in HS decreased. For both diets, bacterial DFM supplementation raised ruminal pH (+0.18 pH units, on average) compared with CON. Irrespective of diet, P63+Lp and P63+Lr increased ruminal cellulase activity (3.8-fold, on average) compared with CON, but this effect was not associated with variations in ruminal microbial numbers. Irrespective of diet, no effect of bacterial DFM on ruminal VFA was observed. For the LS diet, supplementing cows with P63+Lr tended to decrease CH4 emission (26.5%, on average, when expressed per kilogram of milk or 4% fat-corrected milk). Only P63 supplementation to cows fed the HS diet affected the concentration of some milk FA, such as cis isomers of 18:1 and intermediates of ruminal biohydrogenation of polyunsaturated FA. Overall, bacterial DFM could be useful to stabilize ruminal pH. Their effects on CH4 production mitigation and milk FA profile depended on DFM strain and diet and should be confirmed under a greater variation of dietary conditions.  相似文献   

11.
12.
《Journal of dairy science》2023,106(3):2137-2152
Study objectives were to evaluate the effects of feeding rumen-protected Met (RPM) in pre- and postpartum total mixed rations (TMR) on health disorders and the interactions of health disorders with lactation and reproductive performance. Multiparous Holstein cows [470; 235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled at approximately 4 wk before parturition and housed in close-up dry cow (n = 6) and replicated lactation pens (n = 16). Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): (1) control (CON): basal diet = 2.30% and 2.09% Met as % of metabolizable protein (MP) (UW) or 2.22% and 2.19% Met as % of MP (CU); (2) RPM: basal diet fed with RPM with 2.83% and 2.58% Met (Smartamine M, Adisseo Inc.; 12 g prepartum and 27 g postpartum), as % of MP (UW) or 2.85% and 2.65% Met (Smartamine M; 13 g prepartum and 28 g postpartum), as % of MP (CU). Total serum Ca was evaluated at the time of parturition and on d 3 ± 1 postpartum. Daily rumination was monitored from 7 d before parturition until 28 d postpartum. Health disorders were recorded during the experimental period until the time of first pregnancy diagnosis (32 d after timed artificial insemination; 112 ± 3 d in milk). Uterine health was evaluated on d 35 ± 3 postpartum. Time to pregnancy and herd exit were evaluated up to 350 d in milk. Treatment had no effect on the incidence of most health disorders and did not alter daily rumination. Cows fed RPM had reduced subclinical hypocalcemia (13.6 vs. 22%; UW only) on day of parturition relative to CON. Percentage of cows culled (13.1 vs. 19.3%) and hazard of herd exit due to culling [hazard ratio = 0.65, 95% confidence interval (CI): 0.42–1.02] tended to be reduced for cows fed RPM compared with CON. Moreover, cows fed RPM had greater milk protein concentration and protein yield overall, although retrospective analysis indicated that RPM only significantly increased protein yield in the group of cows with one or more health disorders (1.47 vs. 1.40 kg/d), not in cows without health disorders (1.49 vs. 1.46 kg/d) compared with CON. Overall, treatment had no effect on pregnancy per timed artificial insemination; however, among cows with health disorders, those fed RPM had reduced time to pregnancy compared with CON (hazard ratio = 0.71, 95% CI: 0.53–0.96). Thus, except for subclinical hypocalcemia on the day of parturition, feeding RPM in pre- and postpartum TMR did not reduce the incidence of health disorders, but our retrospective analysis indicated that it lessened the negative effects of health disorders on milk protein production and time to pregnancy.  相似文献   

13.
The objectives were to evaluate (1) the use of 2 types of experimental silos (S) to characterize whole-crop oat (Avena sativa L.) silage with or without addition of an inoculant (I), and (2) the effect of inoculation on the microbial community structure of oats ensiled using only plastic bucket silos (BKT). From each of 6 sections in a field, oats were harvested, treated (INO) or not (CON) with inoculant, packed into 19-L BKT or vacuum bags (BG), and ensiled for 217 d. The inoculant added contained Lactobacillus buchneri and Pediococcus pentosaceus (4 × 105 and 1 × 105 cfu/g of fresh oats, respectively). The experimental design was a complete randomized design replicated 6 times. Treatment design was the factorial combination of 2 S × 2 I. Some differences existed between BG versus BKT at silo opening (217 d), including a decreased CP (7.73 vs. 7.04 ± 0.247% of DM) and ethanol (1.93 vs. 1.55 ± 0.155) and increased lactic acid (4.28 vs. 3.65 ± 0.241), respectively. Also, WSC and mold counts were reduced in BG versus BKT for CON (1.78 vs. 2.70 ± 0.162% of DM and 0.8 vs. 2.82 ± 0.409 log cfu/fresh g) but not for INO (~1.53 and 1.55), respectively. Application of INO increased DM recovery (96.1 vs. 92.9 ± 0.63%), aerobic stability (565 vs. 133 ± 29.2 h), acetic acid (2.38 vs. 1.22 ± 0.116% of DM), and reduced NDF (65.0 vs. 67.0 ± 0.57), ADF (36.7 vs. 38.1 ± 0.60), ethanol (0.63 vs. 2.85 ± 0.155), and yeast counts (1.10 vs. 4.13 ± 0.484 log cfu/fresh g) in INO versus CON, respectively. At d 0, no differences were found for S and I on the nutritional composition and background microbial counts. Leuconostocaceae (82.9 ± 4.27%) and Enterobacteriaceae (15.2 ± 3.52) were the predominant bacterial families and unidentified sequences were predominant for fungi. A higher relative abundance of the Davidiellaceae fungal family (34.3 vs. 19.6 ± 4.47) was observed in INO versus CON. At opening (217 d), INO had a lower relative abundance of Leuconostocaceae (42.3 vs. 95.8 ± 4.64) and higher Lactobacillaceae (57.4 vs. 3.9 ± 4.65) versus CON. Despite several differences were found between BKT and BG, both techniques can be comparable for characterizing effects of INO on the most basic measures used in silage evaluation. The use of inoculant improved oat silage quality partially by a shift in the bacterial community composition during ensiling, which mainly consisted of an increased relative abundance of Lactobacillaceae and reduction of Leuconostocaceae relative to CON.  相似文献   

14.
The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the periparturient period (d ?28 ± 3 to 44 ± 3 relative to calving) on dry matter intake (DMI), milk production, apparent total-tract nutrient digestibility, and postpartum ovarian activity of dairy cows fed fresh diets varying in starch content. From d 28 ± 3 before the expected calving date until d 44 ± 3 after calving, 117 Holstein cows were fed diets with SCFP (SCFP; n = 59) or without (control, CON; n = 58). A common, basal, controlled-energy close-up diet (net energy for lactation: 1.43 Mcal/kg; 13.8% starch) was fed before calving. Cows within each treatment (CON or SCFP) were fed either a low- (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet from d 1 to 23 ± 3 after calving (fresh period), resulting in 4 treatment groups: LS-CON (n = 30), LS-SCFP (n = 29), HS-CON (n = 28), and HS-SCFP (n = 30). All cows were fed the HS diets from d 24 ± 3 to 44 ± 3 after calving (post-fresh period). Cows were assigned to treatment balanced for parity, body condition score, body weight, and expected calving date. Milk yield was higher for cows fed the LS diets compared with those fed the HS diets during the fresh period (34.1 vs. 32.1 kg/d), whereas DMI and 3.5% fat-corrected milk yield (FCM) were not affected by dietary starch content, and LS cows tended to lose more body condition than HS cows (?0.42 vs. ?0.35 per 21 d) during the fresh period. Overall DMI during the close-up and fresh periods did not differ between SCFP and CON cows. However, SCFP supplementation transiently increased DMI on d 1 (13.0 vs. 11.9 kg/d) and 5 (15.5 vs. 14.1 kg/d) after calving compared with CON. During the post-fresh period, SCFP cows tended to eat less than CON cows (19.8 vs. 20.6 kg/d) but had similar 3.5% FCM (44.9 vs. 43.6 kg/d), resulting in greater feed efficiency for SCFP cows (FCM/DMI; 2.27 vs. 2.13). Neither starch content of fresh diets nor SCFP supplementation affected the interval from calving to first ovulation or the incidence of double ovulation. These findings suggest that feeding low-starch diets during the fresh period can increase milk production of dairy cows during the fresh period, and that supplementation of SCFP may increase feed intake around calving and feed efficiency in the post-fresh period.  相似文献   

15.
《Journal of dairy science》2023,106(2):1441-1452
Heat-stress-induced inflammation may be ameliorated by antioxidant supplementation due to the purported effects of increased production of reactive oxygen species or oxidative stress on the gastrointestinal tract barrier. Thus, study objectives were to evaluate whether antioxidant supplementation [AGRADO Plus 2.0 (AP); EW Nutrition] affects metabolism and inflammatory biomarkers in heat-stressed lactating dairy cows. Thirty-two mid-lactation multiparous Holstein cows were assigned to 1 of 4 dietary-environmental treatments: (1) thermoneutral (TN) conditions and fed a control diet (TN-CON; n = 8), (2) TN and fed a diet with AP (10 g antioxidant; n = 8), (3) heat stress (HS) and fed a control diet (HS-CON; n = 8), or (4) HS and fed a diet with AP (HS-AP; n = 8). The trial consisted of a 23-d prefeeding phase and 2 experimental periods (P). Respective dietary treatments were top-dressed starting on d 1 of the prefeeding period and continued daily throughout the duration of the experiment. During P1 (4 d), baseline data were collected. During P2 (7 d), HS was artificially induced using an electric heat blanket (Thermotex Therapy Systems Ltd.). During P2, the effects of treatment, day, and treatment-by-day interaction were assessed using PROC MIXED of SAS (SAS Institute Inc.). Heat stress (treatments 3 and 4) increased rectal, vaginal, and skin temperatures (1.2°C, 1.1°C, and 2.0°C, respectively) and respiration rate (33 breaths per minute) relative to TN cows. As expected, HS decreased dry matter intake, milk yield, and energy-corrected milk yield (32%, 28%, and 28% from d 4 to 7, respectively) relative to TN. There were no effects of AP on body temperature indices or production. Milk fat, protein, and lactose concentrations remained unaltered by HS or AP; however, milk urea nitrogen was increased during HS regardless of AP supplementation (26% relative to TN). Circulating glucose remained unchanged by HS, AP, or time. Additionally, HS decreased circulating glucagon (29% from d 3 to 7 relative to TN), but there was no additional effect of AP. There was a tendency for nonesterified fatty acid concentrations to be increased in HS-AP cows throughout P2 (60% relative to TN-CON), whereas it remained similar in all other treatments. Blood urea nitrogen increased for both HS treatments from d 1 to 3 before steadily decreasing from d 5 to 7, with the overall increase being most pronounced in HS-CON cows (27% relative to TN-CON). Further, supplementing AP decreased blood urea nitrogen in HS-AP on d 3 relative to HS-CON (15%). Circulating serum amyloid A tended to be and lipopolysaccharide binding protein was increased by HS, but neither acute-phase protein was affected by AP. Overall, AP supplementation appeared to marginally alter metabolism but did not meaningfully alter inflammation during HS.  相似文献   

16.
《Journal of dairy science》2022,105(9):7344-7353
The objective of this study was to investigate the effects of an exogenous enzyme preparation from Aspergillus oryzae and Aspergillus niger on lactational performance of dairy cows. Forty-eight Holstein cows (32 primiparous and 16 multiparous) averaging (± SD) 36.3 ± 8.7 kg/d milk yield and 141 ± 52 d in milk were enrolled in a 10-wk randomized complete block design experiment (total of 24 blocks) and assigned to 1 of 2 treatments: basal diet, no enzyme supplementation (CON) or the basal diet supplemented with 4.2 g/kg dry matter intake (DMI) of an exogenous enzyme preparation containing amylolytic and fibrolytic activities (ENZ). After a 2-wk covariate period, premixes with the enzyme preparation or control were top-dressed daily by mixing with approximately 500 g of total mixed ration. Production data were collected daily and averaged by week. Milk samples were collected every other week, and milk composition was averaged by week. Blood, fecal, and urine samples were collected over 2 consecutive days at 0, 4, 8, 12, and 36 h after feeding during the last week of the experiment. Compared with CON, cows fed ENZ tended to increase DMI and had increased milk concentrations of true protein, lactose, and other solids. Milk fat content tended to be higher in CON cows. A treatment × parity interaction was found for some of the production variables. Primiparous cows receiving ENZ had greater yields of milk, energy-corrected milk, milk true protein, and lactose compared with CON primiparous cows; these production variables did not differ between treatments for multiparous cows. Intake and total-tract digestibility of nutrients did not differ between treatments. Concentrations of blood glucose and total fatty acids were not affected by ENZ supplementation, but β-hydroxybutyrate concentration tended to be greater in ENZ cows. Overall, the exogenous enzyme preparation used in this study increased milk protein and lactose concentrations in all cows, and milk production in primiparous but not multiparous cows. The differential production response between primiparous and multiparous cows was likely a result of a greater increase in DMI with ENZ supplementation in the younger animals.  相似文献   

17.
《Journal of dairy science》2023,106(5):3192-3202
Exogenous enzymes are added to diets to improve nutrient utilization and feed efficiency. A study was conducted to evaluate the effects of dietary exogenous enzyme products with amylolytic (Amaize, Alltech) and proteolytic (Vegpro, Alltech) activity on performance, excretion of purine derivatives, and ruminal fermentation of dairy cows. A total of 24 Holstein cows, 4 of which were ruminally cannulated (161 ± 88 d in milk, 681 ± 96 body weight, and 35.2 ± 5.2 kg/d of milk yield), were blocked by milk yield, days in milk, and body weight, and then distributed in a replicated 4 × 4 Latin square design. Experimental periods lasted 21 d, of which the first 14 d were allowed for treatment adaptation and the last 7 d were used for data collection. Treatments were as follows: (1) control (CON) with no feed additives, (2) amylolytic enzyme product added at 0.5 g/kg diet dry matter (DM; AML), (3) amylolytic enzyme product at 0.5 g/kg of diet DM and proteolytic enzyme product at 0.2 g/kg of diet DM (low level; APL), and (4) amylolytic enzyme products added at 0.5 g/kg diet DM and proteolytic enzyme product at 0.4 g/kg of diet DM (high level; APH). Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). Differences between treatments were analyzed by orthogonal contrasts: CON versus all enzyme groups (ENZ); AML versus APL+APH; and APL versus APH. Dry matter intake was not affected by treatments. Sorting index for feed particles with size <4 mm was lower for ENZ group than for CON. Total-tract apparent digestibility of DM and nutrients (organic matter, starch, neutral detergent fiber, crude protein, and ether extract) were similar between CON and ENZ. Starch digestibility was greater in cows fed APL and APH treatments (86.3%) compared with those in the AML group (83.6%). Neutral detergent fiber digestibility was greater in APH cows compared with those in the APL group (58.1 and 55.2%, respectively). Ruminal pH and NH3-N concentration were not affected by treatments. Molar percentage of propionate tended to be greater in cows fed ENZ treatments than in those fed CON. Molar percentage of propionate was greater in cows fed AML than those fed the blends of amylase and protease (19.2 and 18.5%, respectively). Purine derivative excretions in urine and milk were similar in cows fed ENZ and CON. Uric acid excretion tended to be greater in cows consuming APL and APH than in those in the AML group. Serum urea N concentration tended to be greater in cows fed ENZ than in those fed CON. Milk yield was greater in cows fed ENZ treatments compared with CON (32.0, 33.1, 33.1, and 33.3 kg/d for CON, AML, APL, and APH, respectively). Fat-corrected milk and lactose yields were higher when feeding ENZ. Feed efficiency tended to be greater in cows fed ENZ than in those fed CON. Feeding ENZ benefited cows' performance, whereas the effects on nutrient digestibility were more pronounced when the combination of amylase and protease was fed at the highest dose.  相似文献   

18.
Polymorphonuclear leukocytes (PMNL) are the first responders upon pathogen invasion and hence play an important role in inflammatory and immune responses. Rumen-protected methionine (MET) and choline (CHOL) during the peripartal period affect the immune response and inflammatory status in dairy cows to different extents. We aimed to examine the effect of MET and CHOL supply on expression of genes regulating key PMNL functions and associations with whole-blood immune challenge. Thirty multiparous Holstein cows from a larger cohort randomly assigned from ?21 to 30 d relative to parturition to a basal control (CON) diet, CON plus MET at a rate of 0.08% of dry matter, or CON plus CHOL at 60 g/d were used. Blood was sampled at ?10, 7, and 30 d relative to parturition for inflammatory biomarker analyses and PMNL isolation. Neutrophil and monocyte phagocytosis and oxidative burst in vitro were assessed in whole blood at 1, 7, and 28 d. Although neutrophil and monocyte phagocytosis did not differ, oxidative burst in neutrophils and monocytes was greater in MET-supplemented cows relative to CON cows. Compared with CON, PMNL adhesion and migration-related genes (ITGAM, ITGB2, ITGA4) were downregulated in response to MET and CHOL. Expression of CADM1 and SELL was also lower in MET-supplemented cows compared with CON cows but not in CHOL cows. In contrast, compared with CON cows, the expression of ICAM1 was lower in CHOL but not MET cows. Similar to adhesion and migration-related genes, cows receiving MET- or CHOL-supplemented diets had lower expression of inflammation-related genes (IL1β, IL10RA, NFKB1, STAT3, TLR2). However, expression of IRAK1 and TLR4 was lower in MET- but not CHOL-supplemented cows. Plasma taurine concentration was greater in MET cows compared with CHOL and CON cows, suggesting a better redox status in plasma. In agreement with plasma taurine, oxidative stress-related genes (CBS, CTH, GPX1, GSS, SOD2) in PMNL were lower in response to MET and to CHOL supply. Overall, immunometabolic gene expression profile and blood biomarker analyses suggest an overall better redox status in PMNL during the transition period in response to MET and CHOL supply. These adaptations in PMNL might be beneficial for mounting a better bactericidal response upon challenge.  相似文献   

19.
《Journal of dairy science》2023,106(4):3008-3022
Heat stress negatively affects the metabolism and physiology of the bovine gut. However, it is not known whether heat stress induces an inflammatory response in mesenteric lymph nodes (MLN), the primary origin of gut immune cells, and thus contributes to inflammatory processes in the circulation. Therefore, our objective was to elucidate the effects of chronic heat stress on the systemic activation of acute-phase response in blood, proinflammatory cytokine production in peripheral blood mononuclear cells (PBMC), and the activation of the toll-like receptor signaling (TLR) 2/4 pathway in MLN leucocytes and their chemokines and chemokine receptor profiles in Holstein cows. Primiparous Holstein cows (n = 30; 169 ± 9 d in milk) were exposed to a temperature-humidity index (THI) of 60 [16°C, 63% relative humidity (RH)] for 6 d. Thereafter, cows were evenly assigned to 3 groups: heat-stressed (HS; 28°C, 50% RH, THI = 76), control (CON; 16°C, 69% RH, THI = 60), or pair-feeding (PF; 16°C, 69% RH, THI = 60) for 7 d. On d 6, PBMC were isolated and on d 7 MLN. Plasma haptoglobin, TNFα, and IFNγ concentrations increased more in HS than CON cows. Concomitantly, TNFA mRNA abundance was higher in PBMC and MLN leucocytes of HS than PF cows, whereas IFNG mRNA abundance tended to be higher in MLN leucocytes of HS than PF cows, but not for chemokines (CCL20, CCL25) or chemokine receptors (ITGB7, CCR6, CCR7, CCR9). Furthermore, the TLR2 protein expression tended to be more abundant in MLN leucocytes of HS than PF cows. These results suggest that heat stress induced an adaptive immune response in blood, PBMC, and MLN leukocytes involving the acute-phase protein haptoglobin, proinflammatory cytokine production, and TLR2 signaling in MLN leucocytes. However, chemokines regulating the leucocyte trafficking between MLN and gut seem not to be involved in the adaptive immune response to heat stress.  相似文献   

20.
Mitigation strategies are vital in minimizing the health and economic risks associated with dairy cattle exposure to aflatoxin (AF). The objective of this study was to determine the effects of a commercially available aluminosilicate clay in a lactation diet on production responses, blood chemistry, and liver inflammatory markers of multiparous lactating Holstein cows during an AF challenge. Sixteen multiparous lactating Holstein cows [body weight (mean ± SD) = 758 ± 76 kg; days in milk = 157 ± 43 d] were assigned to 1 of 4 treatments in a replicated 4 × 4 Latin square design with 21-d periods: no adsorbent and no AF challenge (CON), no adsorbent and an AF challenge (POS), 113 g of aluminosilicate clay top-dressed on the total mixed ration (adsorbent; FloMatrix, PMI Nutritional Additives, Arden Hills, MN) with an AF challenge (F4), or 227 g of adsorbent with an AF challenge (F8). The challenge consisted of 100 μg of AFB1/kg of dietary dry matter intake administered orally. For each period, milk was sampled 3× daily from d 14 to 21; blood, feces, and urine were sampled on d 14, 18, and 21; and liver samples were taken on d 18. Liver tissue was assessed for gene expression and histological hepatocyte inflammation. Statistical analysis was preformed using the MIXED and GLIMMIX procedures of SAS (SAS Institute Inc., Cary, NC). Fat-corrected milk (POS = 37.2, F4 = 39.2, and F8 = 38.9 kg/d) increased as concentration of adsorbent in the diet increased. There was a decrease in milk AFM1 concentration at d 18 as concentration of adsorbent in the diet increased (POS = 0.33, F4 = 0.32, and F8 = 0.27 µg/kg). There was a decrease in AFM1 concentration in urine (POS = 2.10, F4 = 1.89, and F8 = 1.78 µg/kg) and AFB1 concentration in feces (POS = 4.68, F4 = 3.44, and F8 = 3.17 µg/kg) as concentration of adsorbent in the diet increased. Cows in CON had greater concentrations of serum cholesterol (202 mg/dL) and plasma superoxide dismutase (2.8 U/mL) compared with cows in POS (196 mg/dL and 2.6 U/mL, respectively). Plasma glutamate dehydrogenase increased as concentration of adsorbent in the diet increased (POS = 37.8, F4 = 39.3, and F8 = 39.1 U/L). The expression of NFKB1 was greater in the liver of cows in POS (0.78) compared with cows in CON (0.70). The expression of MTOR was greater in the liver of cows in CON (1.19) compared with cows in POS (0.96). When compared with cows in CON, cows in POS had greater odds ratio for hepatocyte inflammation (odds ratio = 5.14). In conclusion, the adsorbent used in this study had a positive effect on milk production and hepatocyte inflammation and reduced AF transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号